Diabetes
Care Summit
Virtual Conference

Friday, September 10, 2021

2021 HAROLD HAMM DIABETES CARE SUMMIT

September 10, 2021

VIRTUAL CONFERENCE

SYLLABUS CONTENT

1.	Agenda	Page 2
2.	Program Information	Page 3
3.	Planning Committee	Page 4
4.	Speakers	Page 5
5.	Planning Committee & Speaker Disclosures	Page 6
3.	Accreditation Statements	Page 7
7.	Accommodation Statement	Page 8

HAROLD HAMM DIABETES CARE SUMMIT

Friday, September 10, 2021 Virtual Conference

8:00 a.m. Welcome and Introductory Remarks

8:10 – 9:10 a.m. KEYNOTE | Precision Medicine in Diabetes

Rochelle Naylor, MD

9:10 - 9:15 a.m. **Break**

9:15 – 11:15 a.m. CONCURRENT BREAKOUT SESSION I

a. Cancer & Diabetes

Itivrita Goyal, MD

b. Diabetes Technology Update

Jonea Lim, MD

Christy Olson, MS, RDN, LD, CDCES

CONCURRENT BREAKOUT SESSION II

Diabetes Prevention and Intervention in Tribal Communities

Valarie Blue Bird Jernigan, DrPH, MPH

Michelle Dennison, PhD, RDN, LD, BC-ADM, CDCES

11:15 - 12:00 p.m. LUNCH

12:00 - 1:00 p.m. KEYNOTE | SARS-CoV-2, COVID-19 and Diabetes: A New Bidirectional Disease?

Steven Kahn, MB, ChB

1:00 – 1:15 p.m. **Break**

1:15 – 3:15 p.m. CONCURRENT BREAKOUT SESSION I

Diabetes-Related Complications and Comorbidities in Youth

Jeanie Tryggestad, MD Petter Bjornstad, MD

Rose Gubitosi-Klug, MD, PhD

CONCURRENT BREAKOUT SESSION II

a. Pharmacology Update

Katherine O'Neal, PharmD, MBA, BCACP, CDCES, BCADM, AE-C, CLS, FADCES

b. The Role of Mental Health in Diabetes Care

Kathryn Jeter, PhD

3:15 – 3:30 p.m. **Break**

3:30 – 4:30 p.m. PLENARY SESSION | An Overview of Nonalcoholic Fatty Liver Disease (NAFLD)

Sirish Palle, MD

4:30 p.m. Adjourn

PROGRAM INFORMATION

Course Overview

Co-sponsored by the Association of Diabetes Care & Education Specialists, the Harold Hamm Diabetes Care Summit is a one-day course that focuses on the management of the patient with diabetes. It is designed to address the unmet educational needs of the interprofessional health care team who have a diverse case mix that includes people with diabetes. The purpose of this conference is to promote excellence in care, and provide upto-date information to enhance knowledge integral to the effective management of diabetes. This continuing education activity is needed because of the explosion of diabetes in our country. The number of persons with diabetes is expected to more than triple by 2050. According to the 2020 National Diabetes Statistics Report from the CDC, diabetes affects 34.2 million people of all ages, which is 10.5 percent of the US population. The Oklahoma State Department of Health also reports more than 14 percent prevalence of diabetes in Oklahoma among adults ages 18 and older. In 2021, Oklahoma ranks the fifth highest in diabetes mortality rate in the nation. Because of the size of this problem and the complexity of managing people with diabetes, this requires continuous training to the health care team in order to meet the needs of people with diabetes in our state and region. This course also combines best practice strategies and education through case studies and lectures.

Educational Objectives

At the end of this activity, the diabetes care team will indicate an increased knowledge of the current evidence-based guidelines and the strategies to create a person-centered treatment plan that considers co-conditions, culture, mental health, age, the person's ability to use technology and patient generated health data, and as possible, with a precision medicine approach.

Target Audience

Family Practice, Internal Medicine, General Practitioners, Endocrinologists, Pediatricians, APRNs, Registered Nurses, Registered Dietitians, Pharmacists, Certified Diabetes Educators, and other interprofessional health care providers.

PLANNING COMMITTEE

Jonea Lim, MD, Course Director

Associate Professor Endocrinology and Diabetes Section Harold Hamm Diabetes Center University of Oklahoma College of Medicine

Niki Brooks, MSW, MHS, PA-C

Clinical Associate Professor Physician Assistant Program Oklahoma City University

Jodi Lavin-Tompkins MSN, RN, BC-ADM, CDCES

Director of Accreditation and Content Association of Diabetes Care & Education Specialists

Emily Jones, PhD, RNC-OB, FAHA, FPCNA

Associate Professor
PhD Program Director
Fran and Earl Ziegler College of Nursing
University of Oklahoma College of Medicine

Christy Olson, MS, RDN, LD, CDCES

Dietitian and Diabetes Educator OU Health Adult Diabetes & Endocrinology Clinic Harold Hamm Diabetes Center University of Oklahoma College of Medicine

Katherine O'Neal, PharmD, MBA, BCACP, CDCES, BC-ADM, AE-C, CLS, FADCES

Associate Professor

Ambulatory Care Degree Option, Co-Director
Department of Clinical and Administrative Sciences
University of Oklahoma College of Pharmacy
Adjunct Associate Professor, University of Oklahoma College of Medicine
Clinical Pharmacist, OU Physicians General Internal Medicine
Diplomate, Accreditation Council for Clinical Lipidology

Jeanie Tryggestad, MD

Associate Professor
Paul and Ruth Jonas Chair
Pediatric Diabetes and Endocrinology Section
Harold Hamm Diabetes Center-Children's
University of Oklahoma College of Medicine

SPEAKERS

Steven Kahn, MB, ChB – Keynote Speaker

Leonard Wright and Marjorie Wright Chair Professor, Division of Metabolism, Endocrinology and Nutrition Director, Diabetes Research Center University of Washington and VA Puget Sound Health Care System Seattle, Washington

Rochelle Naylor, MD – Keynote Speaker

Assistant Professor
Department of Pediatrics and Medicine
Section of Adult and Pediatric
Endocrinology, Diabetes, & Metabolism
The University of Chicago Medicine
Chicago, Illinois

Petter Bjornstad, MD

Assistant Professor
Department of Pediatrics and Medicine
Boettcher Investigator
School of Medicine
Univ. of Colorado Anschutz Medical Campus
Children's Hospital Colorado
Denver, Colorado

Michelle Dennison, PhD, RDN, LD, BC-ADM, CDCES

Director, Public Policy Metabolic Care Center Grants Administrator Oklahoma City Indian Clinic Oklahoma City, Oklahoma

Itivrita Goyal, MD

Assistant Professor Endocrinology and Diabetes Section Harold Hamm Diabetes Center Univ. of Oklahoma College of Medicine Oklahoma City, Oklahoma

Rose Gubitosi-Klug, MD, PhD

Professor and Chief, Pediatric Endocrinology William T. Dahms Professor of Pediatrics Case Western Reserve University Rainbow Babies and Children's Hospital Cleveland, Ohio

Kathryn Jeter, PhD

Assistant Professor Pediatric Diabetes and Endocrinology Harold Hamm Diabetes Ctr- Children's Univ. of Oklahoma College of Medicine Oklahoma City, Oklahoma

Valarie Blue Bird Jernigan, DrPH, MPH

Professor of Rural Health
Director, Center for Indigenous Health
Research and Policy
Okla. State Univ. Center for Health Sciences
Tulsa. Oklahoma

Jonea Lim, MD

Associate Professor Endocrinology and Diabetes Section Harold Hamm Diabetes Center Univ. of Oklahoma College of Medicine Oklahoma City, Oklahoma

Christy Olson, MS, RDN, LD, CDCES

Dietitian and Diabetes Educator
OU Health Adult Diabetes & Endocrin. Clinic
Harold Hamm Diabetes Center
Univ. of Oklahoma College of Medicine
Oklahoma City, Oklahoma

Katherine S. O'Neal, PharmD, MBA, BCACP, CDCES, BC-ADM, AE-C, CLS, FADCES

Associate Professor Dept. of Clinical and Administrative Sciences Univ. of Oklahoma College of Pharmacy Oklahoma City, Oklahoma

Sirish Palle, MD

Assistant Professor Section of Pediatric Gastroenterology Department of Pediatrics Univ. of Oklahoma College of Medicine Oklahoma City, Oklahoma

Jeanie Tryggestad, MD

Associate Professor Pediatric Diabetes and Endocrinology Harold Hamm Diabetes Center-Children's Univ. of Oklahoma College of Medicine Oklahoma City, Oklahoma

PLANNING COMMITTEE AND SPEAKER DISCLOSURES

In accordance with the ACCME Standards for Integrity and Independence, the Association of Diabetes Care & Education Specialists (ADCES) requires anyone in a position to affect or control continuing education content (e.g., authors, presenters, and program planners) to disclose all financial relationships with ineligible companies. It is the responsibility of ADCES to mitigate and disclose all relevant conflicts of interest. Disclosure of a relationship is not intended to suggest or condone bias in any presentation but is made to provide participants with information that might be of potential importance to their evaluation of the presentation.

Relevant disclosures (or lack thereof) among education activity planners and faculty are as follows:

Planning Committee:

Jeanie Tryggestad, MD – No conflicts of interest

Jonea Lim, MD – No conflicts of interest

Christy Olson, MS, RDN, LD, CDCES – No conflicts of interest

Katherine O'Neal, PharmD, MBA, BCACP, CDCES, BC-ADM, AE-C, CLS – No conflicts of interest

Emily Jones, PhD, RNC-OB, FAHA, FPCNA – No conflicts of interest

Niki Brooks, MSW, MHS, PA-C – No conflicts of interest

Jodi Lavin-Tompkins MSN, RN, BC-ADM, CDCES – No conflicts of interest

Speaker disclosures:

Jeanie Tryggestad, MD – No conflicts of interest

Jonea Lim, MD – No conflicts of interest

Christy Olson, MS, RDN, LD, CDCES – No conflicts of interest

Katherine O'Neal, PharmD, MBA, BCACP, CDCES, BC-ADM, AE-C, CLS, FADCES – No conflicts of interest

Petter Bjornstad, MD – Consultant: AstraZeneca, Bayer, Bristol-Meyer-Squibb, Boehringer-Ingelheim,

Novo Nordisk, Eli Lilly, Horizon Pharma

Itivrita Goyal, MD - No conflicts of interest

Rose Gubitosi-Klug, MD, PhD – No conflicts of interest

Kathryn Jeter, PhD – No conflicts of interest

Valarie Blue Bird Jernigan, DrPH, MPH - No conflicts of interest

Michelle Dennison, PhD, RDN, LD, BC-ADM, CDCES - No conflicts of interest

Steven Kahn, MB, ChB - Consultant and Educational Events Speaker: Bayer, Casma Therapeutics,

Eli Lilly, Intarcia, Merck, Novo Nordisk, Pfizer, Third Rock

Rochelle Naylor, MD - No conflicts of interest

Sirish Palle, MD – No conflicts of interest

Disclosure and Mitigation of Relevant Conflicts of Interest: All identified relevant conflicts of interest have been mitigated.

ACCREDITATION STATEMENTS

In support of improving patient care, this activity has been planned by Harold Hamm Diabetes Center and the Association of Diabetes Care & Education Specialists. The Association of Diabetes Care & Education Specialists is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education

(ACPE), and the American Nurses Credentialing Center (ANCC) to provide continuing education for the healthcare team.

This activity was planned by and for the healthcare team, and learners will receive 7.0 Interprofessional Continuing Education (IPCE) credits for learning and change.

Accreditation Council for Pharmacy Education

The Universal Activity Number is JA4008258-9999-21-526-L01-P. This knowledge-based activity has been approved for 7.0 contact hour(s)

American Medical Association (AMA)

Association of Diabetes Care & Education Specialists designates this live activity for a maximum of 7.0 AMA PRA Category 1 Credit(s)TM. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

American Nurses Credentialing Center (ANCC)

Association of Diabetes Care & Education Specialists designates this activity for a maximum of 7.0 ANCC contact hours. This activity discusses 1.25 contact hours of pharmacotherapeutic content.

The Association of Diabetes Care & Education Specialists is approved by the California Board of Registered Nursing, Provider Number 10977, for 7.0 contact hours. RNs must retain this document for 4 years after the activity concludes.

The Association of Diabetes Care & Education Specialists has been authorized by the American Academy of PAs (AAPA) to award AAPA Category 1 CME credit for activities planned in accordance with AAPA CME Criteria. This activity is designated for 7.0 AAPA Category 1 CME credits. PAs should only claim credit commensurate with the extent of their participation.

Commission on Dietetic Registration right. Academy of Nutrition and Dietetics

Commission on Dietetic Registration (CDR): CDR Credentialed Practitioners will receive 7.0 Continuing Professional Education units (CPEUs) for completion of this activity. Completion of this

RD/DTR profession-specific or IPCE activity awards CPEUs (One IPCE credit = One CPEU). If the activity is dietetics-related but not targeted to RDs or DTRs, CPEUs may be claimed which are commensurate with participation in contact hours (One 60 minute hour = 1 CPEU). RDs and DTRs are to select activity type 102 in their Activity Log. Performance Indicator selection is at the learner's discretion.

Certified Diabetes Care and Education Specialists: To satisfy the requirements for renewal of certification for the Certification Board for Diabetes Care and Education (CBDCE), continuing education activities must be diabetes related and approved by a provider on the CBDCE list of Approved Providers (www.ncbde.org). CBDCE does not approve continuing education. The Association of Diabetes Care & Education Specialists is on the CBDCE list of Approved Providers.

Other Health Professionals

It is the responsibility of each participant to determine if the program meets the criteria for relicensure or recertification for their discipline.

To Obtain a Statement of Continuing Education Credit:

To receive a statement of credit you must attend the entire conference. In order to receive a statement of credit, participants must complete and submit the conference evaluation. The evaluation will be emailed to participants on September 10, 2021. Once the evaluation has been completed and submitted, your statement of credit will be emailed to you. If you have any questions, please contact Katie Hoefling at Katie-Hoefling@ouhsc.edu

Accommodation Statement

The University of Oklahoma Health Sciences Center fully complies with the legal requirements of the ADA and the rules and regulations thereof. Please notify us if you have any special needs. Accommodations are available by contacting Katie Hoefling@ouhsc.edu

Katie-Hoefling@ouhsc.edu

Nondiscrimination Statement

The University of Oklahoma, in compliance with all applicable federal and state laws and regulations does not discriminate on the basis of race, color, national origin, sex, sexual orientation, genetic information, gender identity, gender expression, age, religion, disability, political beliefs, or status as a veteran in any of its policies, practices, or procedures. This includes, but is not limited to: admissions, employment, financial aid and educational services. The University of Oklahoma is an Equal Opportunity Institution. www.ou.edu/eoo

Disclaimer Statement

Statements, opinions and results of studies contained in the program are those of the presenters and authors and do not reflect the policy or position of the Board of Regents of the University of Oklahoma ("OU") nor does OU provide any warranty as to their accuracy or reliability.

Every reasonable effort has been made to faithfully reproduce the presentations and material as submitted. However, no responsibility is assumed by OU for any claims, injury and/or damage to persons or property from any cause, including negligence or otherwise, or from any use or operation of any methods, products, instruments or ideas contained in the material herein.

Precision Medicine in Diabetes

Harold Hamm Diabetes Summit

Rochelle N. Naylor, MD
Assistant Professor of Pediatrics
Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism

Disclosure Statement

I have no financial interest of other relationship with any manufacturer/s of any commercial product/s which may be discussed at this activity.

Objectives

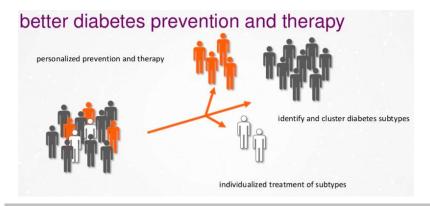
- Provide an overview of the ADA's Precision Medicine in Diabetes consensus report
- Examine monogenic diabetes as a case study for precision medicine implementation
- Discuss approaches to applying precision medicine in polygenic forms of diabetes

Diabetes Mellitus- The Scope of this Disease

- 463 million people worldwide have diabetes
- 10.5% of the US population (34.2 million people) have diabetes
- 34.5% of the US population (>88 million people) have prediabetes

Diabetes Mellitus- The Cost of this Disease

\$237 billion in direct medical cost


\$90 billion in reduced productivity

\$327 billion for diagnosed diabetes

Diabetes Mellitus- Many Diseases

 Heterogeneous group of metabolic disorders characterized by sustained hyperglycemia

https://neo4j.com/blog/graphs-to-fight-diabetes.

American Diabetes Association.

Precision Medicine in Diabetes Initiative

Precision Medicine in Diabetes Initiative

Precision Diabetes Medicine 2021 (PDM2021)

2019 Research Symposium

Overview

The American Diabetes Association (ADA) is establishing the Precision Medicine in Diabetes Taskforce that will, over the coming 5 years, formulate a consensus statement on precision diabetes medicine as well as initiate complementary activities.

- The overall objective is to improve diabetes care by realizing the promise of precision medicine for diabetes.
- Vision Statement- Through engagement of a broad group of stakeholder representatives, our vision is realizing a future of longer, healthier lives for people with diabetes, achieved by applying the appropriate treatment for the appropriate person at the appropriate time.

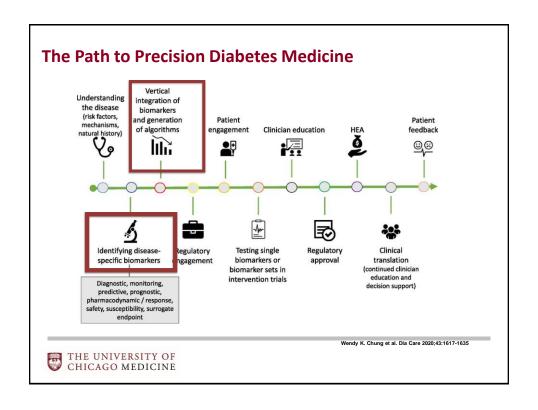
Wendy K. Chung et al. Dia Care 2020;43:1617-1635

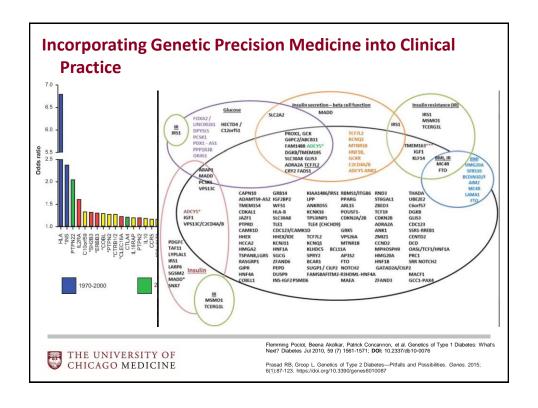
What Precision Medicine Is...and Is Not

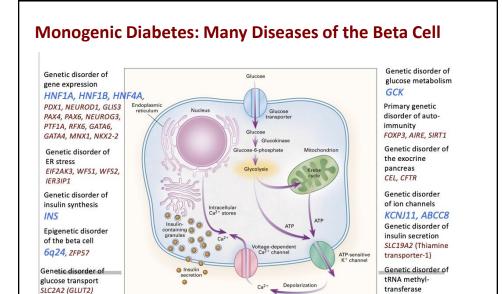
Precision medicine ≠ Personalized medicine

Diabetes Precision Medicine

- Precision diagnostics
- Precision therapeutics
- Precision prevention
- Precision prognostics
- · Precision monitoring




The Path to Precision Diabetes Medicine

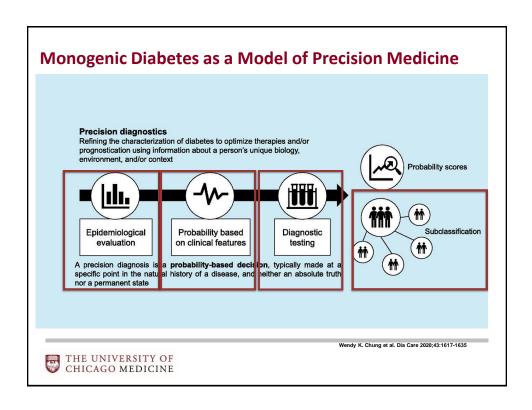

- *Precision diagnosis* involves refining the characterization of the diabetes diagnosis for therapeutic optimization or to improve prognostic clarity using information about a person's unique biology, environment, and/or context.
- $\circ \ Precision \ diagnostics \ may involve \ subclassifying \ the \ diagnosis \ into \ subtypes, \ such \ as \ is \ the \ case \ in \ MODY, \ or \ utilizing \ probabilistic \ algorithms \ that \ help \ refine \ a \ diagnosis \ without \ categorization.$
- o Careful diagnosis is often necessary for successful precision therapy, whether for prevention or treatment. This is true where subgroup(s) of the population must be defined, within which targeted interventions will be applied, and also where one seeks to determine whether progression toward disease has been abated.
- o Precision diagnosis can be conceptualized as a pathway that moves through stages, rather than as a single step. The diagnostic stages include 1) an evaluation of prevalence based on epidemiology, including age, or age at diagnosis of diabetes, sex, and ancestry; 2) probability based on clinical features; and 3) diagnostic tests that are interpreted in the light of 1) and 2). A diagnosis in precision medicine is a probability-based decision, typically made at a specific point in the natural history of a disease, and neither an absolute truth nor a permanent state.

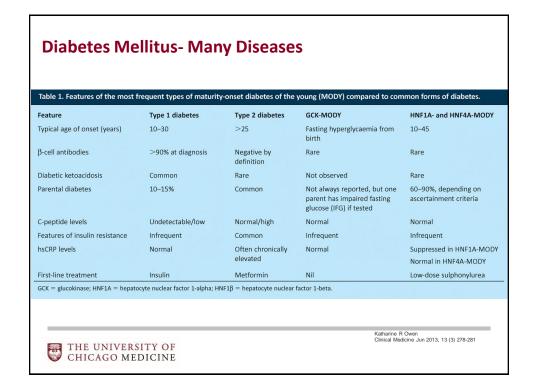
Wendy K. Chung et al. Dia Care 2020;43:1617-1635

TRMT10A

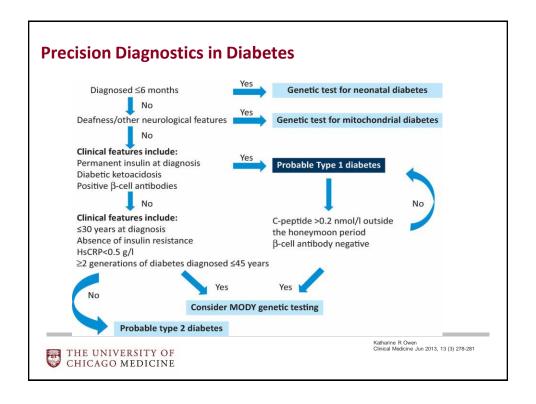
Monogenic Diabetes

- 0.4% of all diabetes
- ~3.5% of all diabetes diagnosed under 30 years
- Due to highly penetrant mutations in genes that are important to beta cell function and may affect other parts of the body



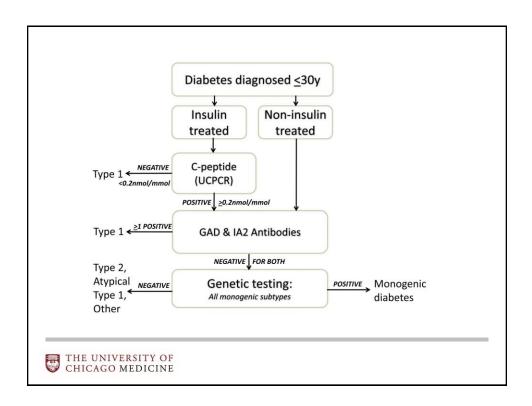

Monogenic Diabetes

- Two main clinical phenotypes
- Neonatal diabetes- "Simple" phenotype
 - Do genetic testing for diagnosis <6 months of age (consider for 7-12 months of age)
 - Probe for details if someone says "I have had diabetes my whole life"
- Maturity-onset diabetes of the young (MODY)



Approaches to Diagnosing MODY

Pancreatic autoantibodies GAD65, islet cell antibodies (IA-2, ICA), insulin, Znt8	Negativity at diabetes onset should prompt consideration of MODY. Positive antibodies at or after diagnosis suggests type 1 diabetes, though exceptions occur.
C-peptide	Clearly positive C-peptide levels (≥0.60 ng/mL or 0.2 nmol/L)after 3-5 years duration of clinically diagnosed type 1 diabetes should prompt consideration of MODY.
Urine C-peptide creatinine ratio (UCPCR)	Useful after diabetes of >5 year's duration. UCPCR is higher in <i>HNF1A</i> -MODY and <i>HNF4A</i> -MODY compared to type 1 diabetes. UCPCR of ≥0.2 nmol/mmol should prompt consideration of MODY.
High sensitivity C-Reactive protein (hs-CRP)	Mean hs-CRP is consistently lower in HNF1A-MODY compared to other monogenic and polygenic forms of diabetes. hs-CRP <0.75 mg/L should prompt consideration of MODY.
HbA1c- useful when considering a diagnosis of GCK-MODY	Values consistent with GCK-MODY: 5.6-7.3% (38-56 mmol/mol) at ages =40 years<br 5.9-7.6% (41-60 mmol/mol) at ages >40 years
MODY Probability Calculator	For use in estimating the likelihood of a MODY diagnosis in patients with diabetes onset before age 35 years. Developed in a European Caucasian cohort. diabetesgenes.org/content/mody-probability-calculator
Type 1 diabetes genetic risk score (T1D-GRS)	Discriminates T1DM from MODY and NDM T1D-GRS >50 th T1D centile is indicative of T1DM (94% specificity, 50% sensitivity)


Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients

Diabetes Care 2017;40:1017-1025 | https://doi.org/10.2337/dc17-0224

Beverley M. Shields, ^{1,2}
Maggie Shepherd, ^{1,2} Michelle Hudson, ¹
Timothy J. McDonald, ^{1,3} Kevin Colclough, ⁴
Jaime Peters, ⁵ Bridget Knight, ^{1,2}
Chris Hyde, ⁵ Sian Ellard, ^{1,4}
Ewan R. Pearson, ⁶ and
Andrew T. Hattersley, ^{1,2} on behalf of the
UNITED study team

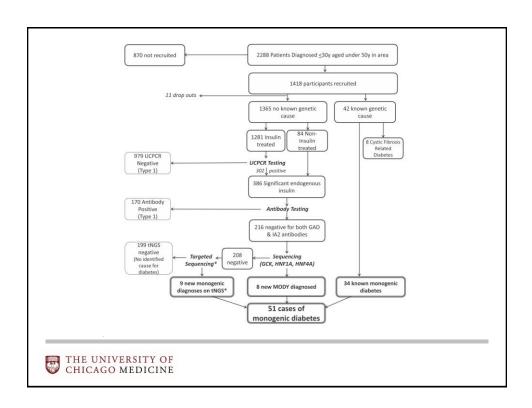


Table 2—PPV and NPV values for the biomarker pathway, traditional MODY criteria (age at diagnosis younger than 25 years, non-insulin-treated, and parent affected with diabetes), and the MODY probability calculator (using a probability >25%, the pickup rate for the diagnostic laboratory)

		Prevalence of monogenic			Percentage of monogenic	genic needed	
10	N	diabetes	PPV (%)	NPV (%)	cases missed	to test	
Biomarker pathway	1,407	3.6% (51/1,407)	20.0	99.91	0	5	
Traditional MODY criteria	1,362	3.6% (49/1,362)	57.6	97.7	63	2	
MODY probability calculator	1,347	3.3% (45/1,347)	40.4	98.3	55	3	

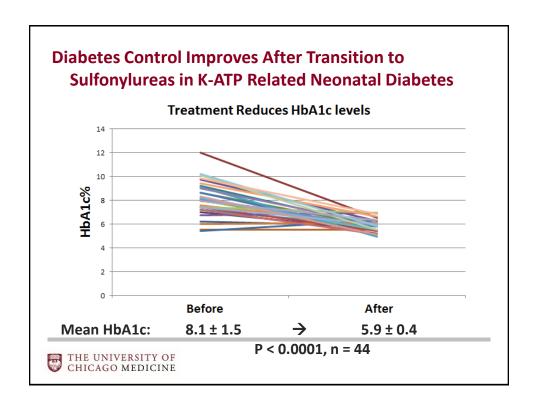
Prevalence is the proportion of diagnosed monogenic diabetes, percentage of monogenic cases missed is the proportion of monogenic cases not picked up by the approach, and number needed to test is 1/PPV.

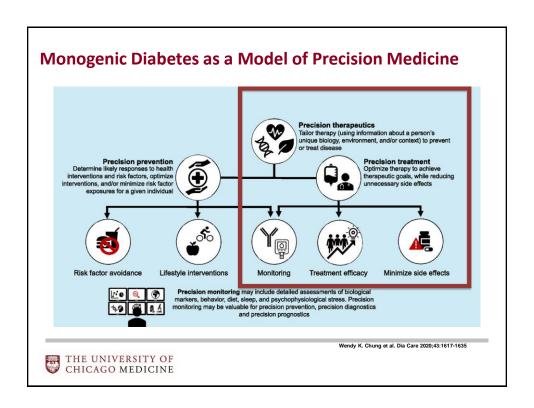
The Impact of Biomarker

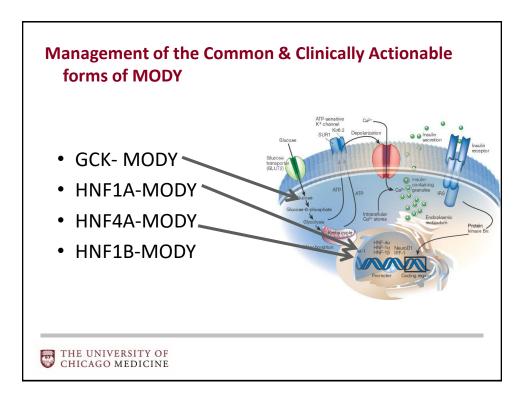
Matthew S. GoodSmith,¹
M. Reza Skandari,² Elbert S. Huang,³ and
Rochelle N. Naylor⁴

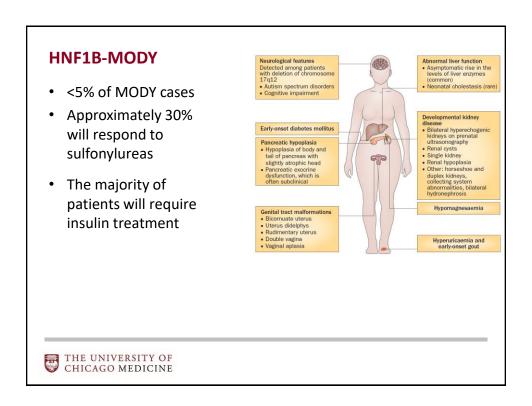
RESULTS The strategy of biomarker screening and genetic testing was cost-saving as it increased average quality of life (+0.0052 QALY) and decreased costs (–\$191) per simulated patient relative to the control arm. Adding cascade genetic testing increased quality-of-life benefits (+0.0081 QALY) and lowered costs further (–\$735).

Ordering Genetic Testing


Monogenic Diabetes Diabetes


- CLIA-certified labs
 - Academic-based labs (e.g, The University of Chicago Genetics Services Lab), GeneDx, Athena Diagnostics, Invitae, LabCorp, Prevention Genetics, many others
- Get a prior authorization FIRST!
 - Don't forget co-pays
- Encourage patients to inquire about payment plans/assistance from the labs
- · Get help interpreting the genetic test report if needed


monogenicdiabetes@uchicago.edu

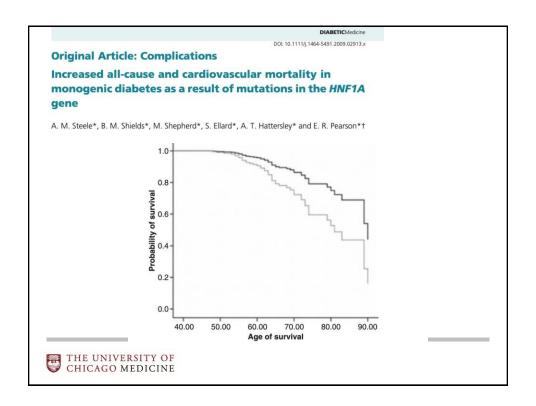

MonogenicDiabetesRegistry.org

Precision Medicine in Monogenic Diabetes

Clinically Actionable MODY

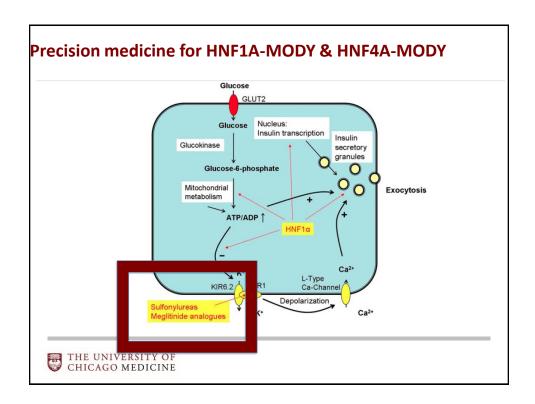
- MODY due to HNF1A, HNF4A, orGCK is clinically actionable
- Treatment is not needed for GCK-MODY and HbA1c doesn't change
 - Decreased costs, medical surveillance, exposure to adverse medication outcomes
- First-line therapy for HNF1A- and HNF4A-MODY is sulfonylureas
 - Decreased drug costs, decrease in HbA1c, expected decrease in diabetes-related complications

HNF1A-MODY and HNF4A-MODY


- HNF1A-MODY is the most common cause of MODY worldwide; HNF4A-MODY represents ~5% of all MODY cases
- Progressive defect in glucose-dependent insulin secretion resulting in young-onset diabetes
- At risk for diabetes-related microvascular and macrovascular, tied to glycemic control

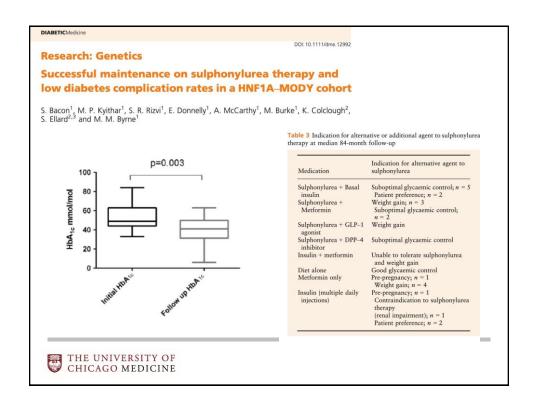
HNF1A-MODY- Clinical presentation

- · Low renal glucose threshold
- Large incremental increase between fasting and 2 hour glucose on OGTT (usually >90 mg/dL [5.0 mmol/L])
 - Can have normal fasting glucose even while HbA1c is abnormally high due to postprandial hyperglycemia
- Lower hsCRP levels (vs T2DM, T1DM, other MODY)
- Higher urinary c-peptide to creatinine ratio (vs T1DM)
- Normal/Increased HDL, but CV risk is higher than in nonaffected first-degree relatives → Give statin therapy



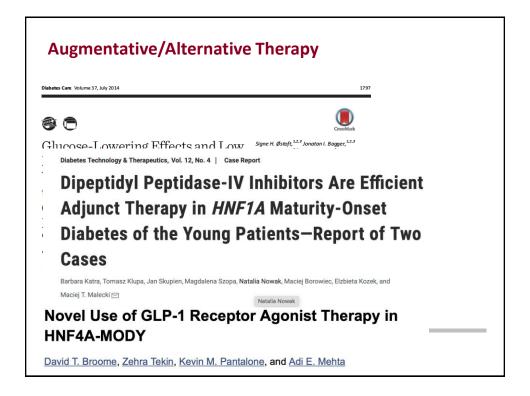
HNF4A-MODY

- Clinical presentations
 - Fetal macrosomia
 - Transient neonatal hypoglycemia
 - Diabetes presentation in adolescence or early adulthood
- · Laboratory features
 - Possible low HDL, lipoprotein A1, A2

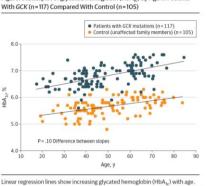


Sensitivity to Sulfonylureas

- Transitioning from insulin to sulfonylureas is associated with stable or decreased HbA1c
 - 0.8-1.5% decrement demonstrated in HNF1A-MODY
 - Important implications for diabetes complications given strong relationship between HbA1c and likelihood of microvascular complications
 - Dedicated tertiary MODY clinic showed much lower complication rates in modern HNF1A-MODY cohort versus historical cohorts

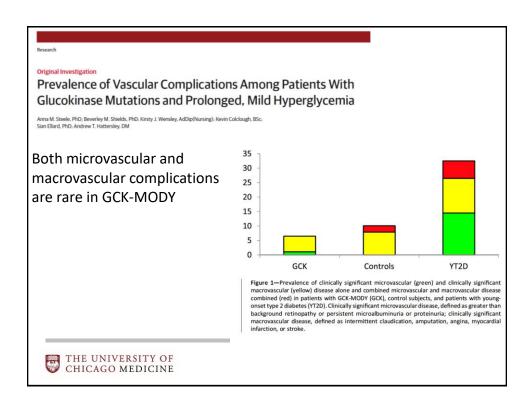


Sensitivity to Sulfonylureas


- Typically start with ¼- ½ pill for treatment, and escalate as needed
 - If you are using type 2 diabetes doses, then that is a sign of non-response
 - Durability varies
 - Weight gain increases the likelihood of sulfonylurea failure
- Meglitinides are an alternative treatment option if hypoglycemia is a problem

GCK-MODY

- Glucokinase catalyzes the first step in glucose metabolism
- Heterozygous inactivating mutations in GCK raise the set-point for glucose stimulated insulin release (GSIR) to 120-130 mg/dL
- Stable, mild fasting hyperglycemia



THE UNIVERSITY OF CHICAGO MEDICINE

GCK-MODY

- Clinical presentations
 - Asymptomatic incidental finding, especially in children
 - GDM with continued hyperglycemia after delivery
- Laboratory features
 - Fasting glucose typically ranges from 99-144 mg/dL (5.5-8 mmol/L)
 - Small incremental increase between fasting and 2 hour glucose on OGTT (usually <65 mg/dL [3.6 mmol/L])
 - Hemoglobin A1c typically 5.6-7.8%

Precision medicine for GCK-MODY...

Is no medicine at all (most of the time)

Precision medicine for GCK-MODY

Diabetologia DOI 10.1007/s00125-013-3075-x

SHORT COMMUNICATION

Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia

Amanda Stride • Beverley Shields • Olivia Gill-Carey • Ali J. Chakera • Kevin Colclough • Sian Ellard • Andrew T. Hattersley

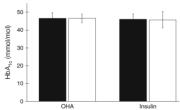
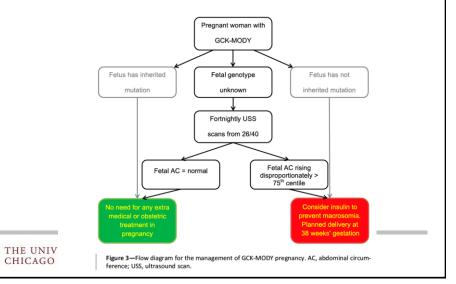
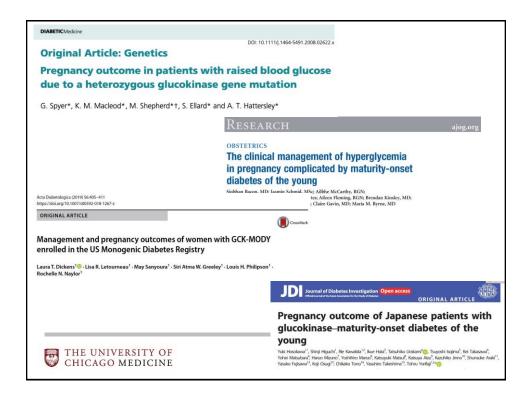


Fig. 1 Bar chart of mean HbA $_{1c}$ for patients with GCK-MODY treated with either OHAs $(n\!=\!6)$ or insulin $(n\!=\!10)$. Black columns represent HbA $_{1c}$ once treatment had stopped. Error bars represent 95% Cls. To convert values for HbA $_{1c}$ in mmol/mol into %, add 2.15 and divide by 10.929 or use the conversion calculator at www.hba $_{1c}$.nu/eng/


GCK-MODY in Pregnancy

- Outside of pregnancy → treatment unnecessary and ineffective
- In pregnancy → treatment based on fetal genotype

GCK-MODY Management in Pregnancy


• In pregnancy, treatment is based on fetal genotype

GCK-MODY Outcomes in Pregnancy

- There are unresolved questions on maternal and fetal risks related to how GCK-MODY is managed
- · The best management is still unclear

GCK-MODY Outcomes in Pregnancy: Neonatal **Outcomes**

Table 1 Background information about survey respondents and pregnancies

Respondents	54		
Pregnancies	128		
Average age at pregnancy	29.9 years (range 17-41 years)		
Average number of pregnancies	2.7 (range 1-6)		
Hyperglycemia diagnosed before pregnancy	51 (40%)		
GCK	18 (+2 suspected MODY)		
Gestational diabetes	10		
Type 1 diabetes	4		
Type 2 diabetes or pre-diabetes	26		
Caucasian race by self-report	48 (89%)		

GCK diagnosis known before pregnancy	18/128 (14%)
Glucose-lowering medication prior to pregnancy	6 (33%)
Healthcare provider during pregnancy (respondents could select more than 1)	
Family physician	2 (11%)
General obstetrician	13 (72%)
High-risk obstetrician	11 (61%)
Endocrinologist	13 (72%)
Midwife	3 (17%)
Dietary changes recommended	10 (56%)
Treatment during pregnancy	
No medication	7 (39%)
Oral (glyburide)	1 (6%)
Insulin ^a	10 (56%)
Average timing of insulin initiation when started during pregnancy (weeks)	16.4 (range 5–32)
Pregnancy outcome	
Term birth	13 (72%)
Pre-term birth	3 (17%)
Currently pregnant	2 (11%)

GCK-MODY Outcomes in Pregnancy: Neonatal Outcomes

Table 3 Fetal birth weight by genotype and maternal treatment

Infant genotype	Maternal treatment	Number of infants (full term)	Average birth weight (SD) for term infants (g)	p value	Average birth weight percentile (SD) ^a for all infants	p value
GCK +	Insulin	8 (7)	2967 (9330)		34 (27)	
	No treatment	15 (14)	3725 (568)	0.005	58 (33)	0.110
GCK -	Insulin	9 (5)	3757 (532)		84 (22)	
	No treatment	3 (2)	4023 (284)	0.489	90 (8)	0.530

Cell-free fetal DNA for GCK-MODY

Clinical Chemistry 66:7 958-965 (2020) Molecular Diagnostics and Genetics

Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants

Richard C. Caswell, ^{a.b} Tristan Snowsill, ^c Jayne A.L. Houghton, ^{a.b} Ali J. Chakera, ^{a.d} Maggie H. Shepherd, ^{a.e} Thomas W. Laver, ^a Bridget A. Knight, ^{a.e} David Wright, ^f Andrew T. Hattersley, ^{a.b} and Sian Ellard ^{a.b.}, ^e

Sequencing cell-free fetal DNA in pregnant women with GCK-MODY: a proof-of-concept study

Soo Heon Kwak ™, Camille E Powe, Se Song Jang, Michael J Callahan, Sarah N Bernstein, Seung Mi Lee, Sunyoung Kang, Kyong Soo Park, Hak C Jang, Jose C Florez ... Show more

The Journal of Clinical Endocrinology & Metabolism, dgab265, https://doi.org/10.1210/clinem/dgab265

Published: 20 April 2021 Article history ▼

Monogenic Diabetes Clinical take home points

- Young-onset diabetes: <u>Always consider MODY!</u>
- Always get a PA before ordering genetic testing
 - monogenicdiabetes@uchicago.edu
 - For PA letters
 - Help interpreting reports
- Implement precision therapeutics:
 - HNF1A-MODY- Sulfonylureas and a statin
 - HNF4A-MODY- Sulfonylureas
 - GCK-MODY- No pharmacologic therapy and deescalate diabetes care

Applying Precision Medicine to Polygenic Forms of Diabetes

THE FUTURE

Diabetes Sub-Classification in Type 1 Diabetes

> Zhonghua Nei Ke Za Zhi. 2004 Mar;43(3):174-8.

[Subclassification of seronegative type 1 diabetic subjects with HLA-DQ genotypes]

[Article in Chinese]

Dong-mei Zhang ¹, Zhi-guang Zhou, Chi Zhang, Gan Huang, Ping Jin, Jian-ping Wang, Jia-li Wei, Bai-ying Hu

Diabetes Sub-Classification in Type 2 Diabetes

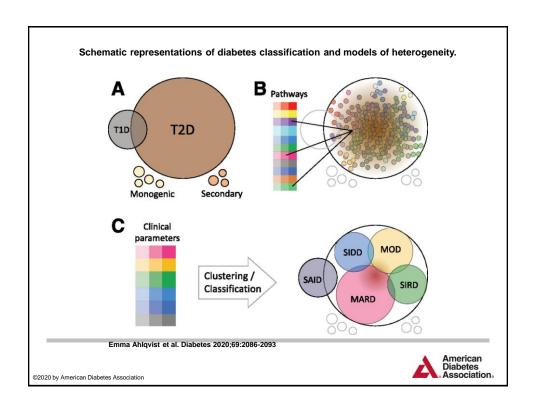
From Wikipedia, the free encyclopedia. A wastebasket diagnosis or trashcan diagnosis is a vague diagnosis given to a patient or to medical records department for essentially non-medical reasons.

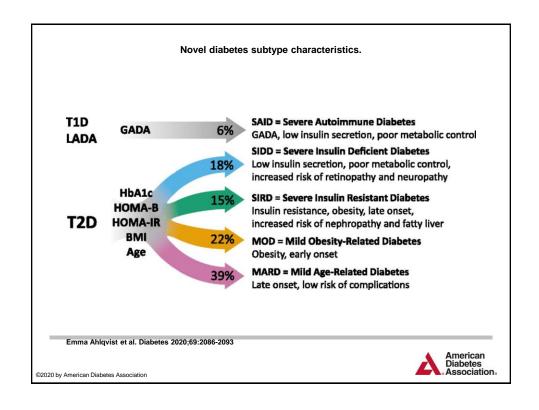
https://en.wikipedia.org > wiki > Wastebasket_diagnosis

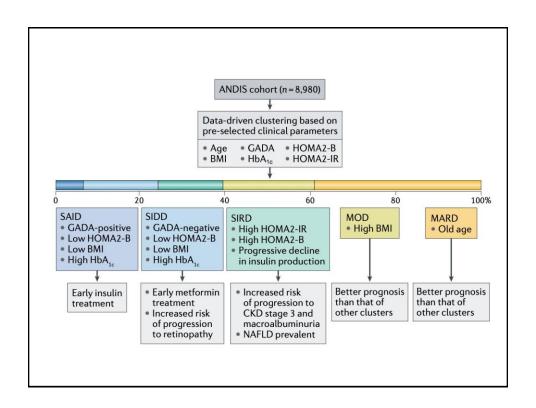
Wastebasket diagnosis - Wikipedia

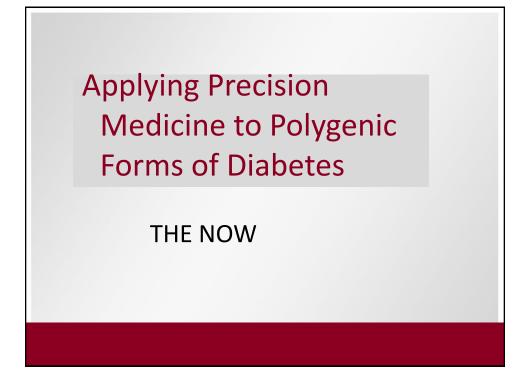
https://dictionary.cambridge.org/images/thumb/wastep_noun_002_40605_2.jpg?version=5.0.161

Diabetes Sub-Classification in Type 2 Diabetes

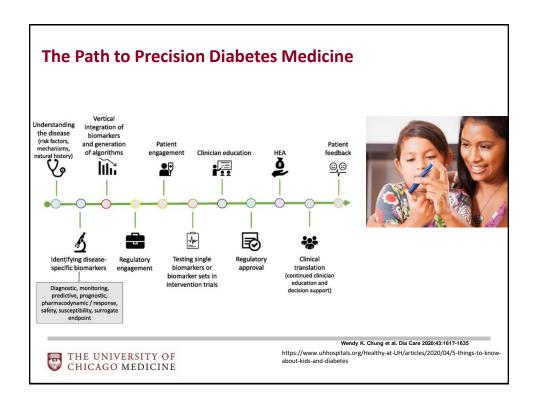


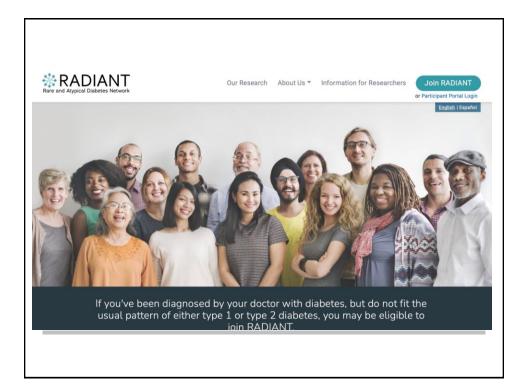

New insights from monogenic diabetes for "common" type 2 diabetes


Divya Sri Priyanka Tallapragada, Seema Bhaskar, and Giriraj R. Chandak


wide association studies. The diagnosis of T2D can rather be considered "waste basket diagnosis"—not because there is no-cause, but because there is no-one-cause. The rate of

Applying a Precision Lens to Type 1 Diabetes


- · Always use biomarkers
 - Antibody testing
 - C-peptide
- Do not ignore obesity
 - Discuss Metformin, lifestyle changes


Applying a Precision Lens to Type 2 Diabetes

- Always use biomarkers
 - Antibody testing
 - C-peptide
- Consider ancestry and how that impacts BMI assessment
- Use a step-wise approach to therapy considering options other than insulin as your second-line agent for appropriate clinical pictures

Thank you for your attention

monogenicdiabetes@uchicago.edu

Diabetes Care Summit

Breakout Session I:

- Cancer & Diabetes
- Diabetes Technology Update

Diabetes Care Summit

DISCLOSURES

- · None to disclose
- · No conflicts of interest

Objectives

- 1 Epidemiology
- 2 Interplay of diabetes mellitus and cancer
- 3 Chemotherapy/ Immunotherapy and new onset-diabetes
- 4 Management of diabetes in cancer
- 5 Diabetes management at end-of-life

Cancer – 2nd Diabetes – 12th

Leading causes of death worldwide Incidence is increasing globally

Giovannucci et al., CA Cancer J Clin. 2010

INTRODUCTION

- Strong and consistent link b/w diabetes and cancer
- Share many common risk factors
- Diabetes a/w increased risk of many cancers and cancer mortality
- Diabetes and cancer have bidirectional relation
- Cancer survivors have a higher incidence of developing subsequent diabetes (reverse causality)

Citation: Garg et al., Diabetes Obesity and Metabolism. 2013 Lega et al., Endocrine Reviews. 2019

Risk factors

- Non-modifiable risk factors:
 - Age
 - Sex
 - Ethnicity (differences in genetic factors and socioeconomic disparities)
- Modifiable risk factors
 - · Overweight, obesity and weight change
 - Diet
 - Physical activity
 - Tobacco/Alcohol

Obesity – strong risk factor

- Strong association b/w obesity, insulin resistance, T2DM and cancer risk
- Breast, colorectal, endometrium and pancreas: consistently a/w overweight and obesity
- In parallel with the obesity epidemic in adolescents and young adults; increasing frequency of incidence/ prevalence of T2D and colon cancers also in this population
- Visceral adiposity (more than BMI) a/w higher risk
- Weight loss and diabetes and cancer risk

Critical question?

Association between diabetes and cancer: Is it due to shared risk factors

or

Diabetes itself (directly by hyperglycemia or indirectly by insulin resistance) increases risk of cancers

Epidemiology associations

Account for >60%

Obesity and cancer risk

- Endometrial
- Breast
- Colorectal
- Others esophageal, liver, pancreas, GB, ovarian and renal cancers

Diabetes and cancer risk

- Breast
- Colorectal
- Endometrial
- GB
- Kidney, pancreatic, HCC, gastric and thyroid - ?? bias

Citation: Lega et al., Endocrine Reviews. 2019

Consistent

relationship

T2DM and prostate cancer

- Inverse relationship
 - Meta-analysis of 45 observational studies suggest that men with diabetes have a 14% lower risk of prostate cancer compared to men without diabetes
- Plausible explanations:

Citation: Bansal et al., Prostate Cancer Prostatic Dis. 2013 Kasper et al., Cancer Epidemiol Biomarkers Prev. 2006

Potential Mechanisms of Obesity, Diabetes, and Cancer Risk

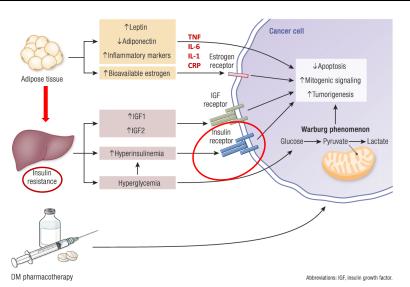
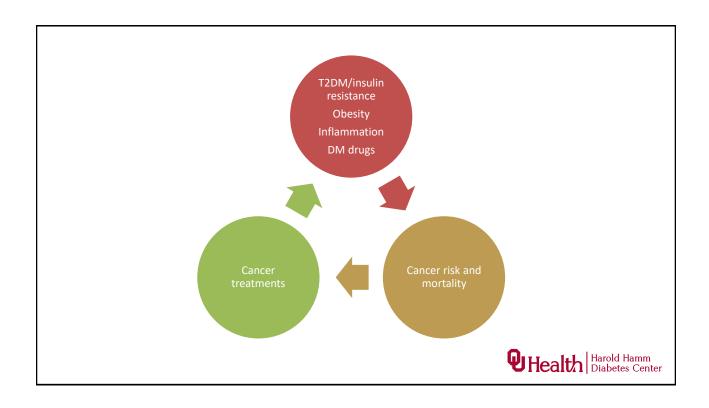



Figure 1. Main mechanisms and pathways between obesity, insulin resistance, and diabetes pharmacotherapy and cancer growth and progression.

Adapted from Lega et al., Diabetes, Obesity and Cancer. Endocrine Reviews. 2019

Do anti-diabetes drugs cause cancer?

	Metformin	 Anti-neoplastic effects in many preclinical and in-vitro studies Reduced incidence of development of breast Ca and pancreatic Ca in 2 studies Being investigated as adjuvant therapy for cancer now
	Sulfonylureas	 Increased risk of developing solid tumors in some studies Low numbers of cancers reported, evidence is weak
-	Thiazolidinediones	 Pioglitazone has been shown to increase risk of bladder cancer (weak association) Use with caution in personal or family h/o bladder cancer
-	GLP1 based therapies (GLP1RA/DPP IV inh)	 GLP1RA a/w thyroid C-cell hyperplasia and MTC in rats, avoid use in h/o MTC or MEN-2 Increased risk of pancreatic cancer - ??
	nnucci et al., CA Cancer J Clin. 2010 t al., Diabetes Obesity and Metabolism. 2013	Phealth Harold Hamm Diabetes Center

Do anti-cancer drugs cause diabetes? Chemotherapy Androgen Platinum-based Deprivation (Cisplatin) therapy 5-fluorouracil based mTOR kinase inhibitors (Prostate (everolimus) Cancer) TKI (nilotinib) **Immunotherapy** Steroids (PD-1/PDL-1

Megestrol

Late metabolic complications of cancer

- Survival rates for most cancers improved
- Cancer survivors (CSs) now have increased mortality from secondary neoplasms and CV disease

inhibitors)

- Increasing evidence of metabolic syndrome seen in survivors of cancer
- Increased risk of DM (2-3.6 fold) in patients who underwent HCT compared to sibling donors
- CSs need long term follow up and appropriate screening

Citation: Gallo et al. Acta Diabetol. 2016 Lega et al., Endocrine Reviews. 2019

Harold Hamm Diabetes Center

Steroid induced diabetes

- Widely used in cancer patients, common in many treatment protocols
- Used in anti-emetic regimen, reduce edema, aid in nutrition and pain management
- Induce and exacerbate diabetes
- Fasting BG are often normal, more post prandial hyperglycemia, often severe
- Increase hepatic gluconeogenesis, increase insulin resistance and decrease insulin secretion
- Can resolve if temporary and low dose steroids used, but usually permanent

Management

Prompt recognition

- Patient w/o h/o diabetes
 - · A1c not reliable due to acute hyperglycemia
 - · Screen before starting steroids
 - · Capillary BG testing more reliable
- Patients with pre-existing diabetes
 - Educate patient, exacerbation of hyperglycemia on GC therapy
 - · More frequent SMBG needed
 - Understanding the cyclical nature of GC therapy and escalating therapy during steroid use

Proactive treatment

- Flexible approach due to cyclical use of steroids
- Use of agents targeting post-prandial glucose required
- Use of short-acting sulfonylureas can be considered
- Once daily NPH/Levemir regimens
- Basal-bolus regimens; prandial short acting insulin given before meals
- Intensification of therapy (2-3 times) during GC use and simultaneously reduced once GC tapered or stopped.

Jacob et al., Management of diabetes in patients with cancer. Q J Med. 2015

Immunotherapy/Immune Checkpoint Inhibitors (ICI)

CTLA-4 inhibitors

• Ipilimumab (Ipi)

PD-1 inhibitors

- Nivolumab
- Pembrolizumab
- Dostarlimab

PD-L1 inhibitors

- Atezolizumab
- Avelumab
- Druvalumab

CTLA-4 inhibitors

Mechanism of action

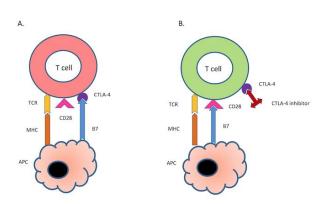


Fig. 1 (original): CTLA-4 inhibitors mechanism of action.

- A. Inactivated T cell. Binding of B7 with CTLA-4 instead of CD28 keeps T cell inactivated by blocking co-stimulation.
- B. Activated T cell. CTLA-4 inhibitors like Ipilimumab binds with CTLA-4 on T cells thereby releasing B7 to bind with CD28 for co-stimulating and activating T cells

TCR- T cell receptor; MHC- Major Histocompatibility Complex; APC- Antigen Presenting Cell; CTLA-4-Cytotoxic T-lymphocyte associated antigen-4

Engelhardt et al., *J Immunol.* 2006 Goyal et al., IJMR. In press

PD-1/PDL-1 inhibitors

Mechanism of action

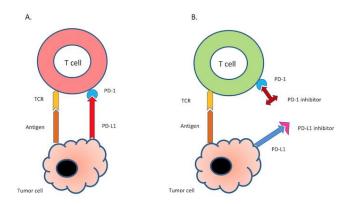
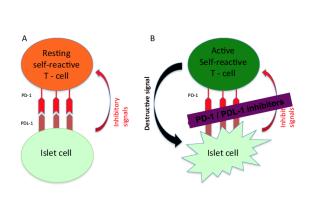


Fig. 2 (original): PD-1/PDL-1 inhibitors mechanism of action.

- A. Inactivated T cell. Binding of PD-1 on T-cell with PD-L1 on tumor cell keeps T cell inactivated.
- B. Activated T cell. Anti PD-1 or PD-L1 antibodies prevent binding of PD-1 with PD-L1 to keep T cell activated


Blank et al., Cancer Immunol Immunother. 2005 Goyal et al., IJMR. In press TCR- T cell receptor; PD-1- Programmed Cell Death Protein -1; PD-L1- Programmed Death Ligand-1

New onset-diabetes

- Autoimmune diabetes or new onset diabetes from ICI therapy
- Autoimmune destruction of pancreatic β cells
- More common with PD-1/PD-L1 inhibitors with incidence ranging from 0-2%
- Majority develop within three months of starting ICI
- Many cases described in literature now

Citation: Barroso-Sousa et al., JAMA Oncol. 2018 de Filette et al., Horm Metab Res. 2019 Akturk et al., Diabet Med. 2019

Citation: Hickmott et al., Target Oncology. 2017 Ansari et al., J Exp Med. 2003 Wang et al., Proc Natl Acad Sci. 2005 Kochupurakkal et al., PLoS One. 2014

Pathogenesis

- Considered to be autoimmune in nature
- PD-1/PD-L1 interaction in pancreatic cells is protective
- PD-1/PD-L1 inhibitors → expansion of autoreactive T cells → destruction of β cells
- Individuals with either HLA-DR3-DQ2 or HLA-DR4-DQ8 haplotypes at higher risk

Clinical presentation

- Timing of presentation variable
- Acute presentation: can present as severe hyperglycemia or DKA
- A1c not reliable
- Insulin and c-peptide levels undetectable, presence of diabetesassociated antibodies variable
- Diabetes-associated autoantibodies need not be present for diagnosis
- · ICI-induced diabetes mellitus is almost always permanent

Citation: Hong et al., Front Endocrinol. 2020 Usui et al., J Thorac Oncol. 2017 Goyal et al., IJMR. 2021 (in press)

How does it differ from T1D/LADA?

- Age of onset is later
- Rapid decline of C-peptide and sudden ß-cell failure
- Autoantibodies frequently testing negative

Citation: Tsang et al., J Clin Endocrinol Metab. 2019 Quandt et al., Clin Exp Immunol. 2020

Management

Acute setting

DKA or severe hyperglycemia:

- Appropriate management with insulin infusion, intravenous fluids, and electrolyte monitoring
- Steroids not indicated in this condition

Routine monitoring on ICI

- HbA1c and blood glucose should be tested before and during treatment with PD-1/PD-L1 inhibitors or
- When symptoms of diabetes develop

Chronic management

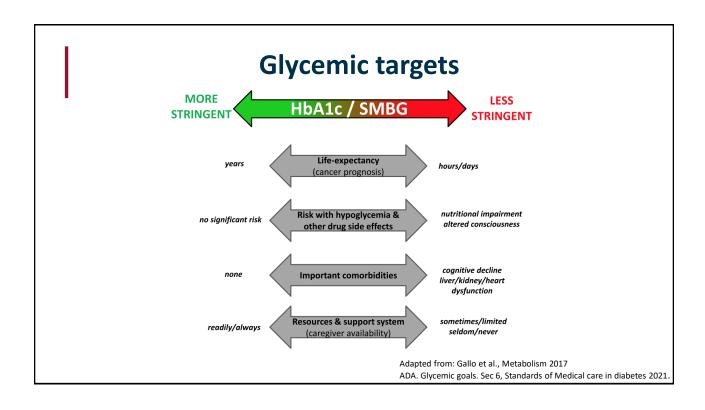
- Insulin therapy in a basal-bolus regimen
- Education on insulin use
- Recognition of hypo/ hyperglycemia

Call and refer to an endocrinologist immediateTy

Goyal et al., IJMR. 2021 (in press)

Barriers in treating cancer among diabetes

- Pre-existing renal, cardiac or neuropathic complications in long standing or poorly controlled DM
- Many chemotherapeutic agents known to exacerbate these complications
 - Cisplatin known to cause renal insufficiency
 - Anthracyclines cardiotoxicity
 - Cisplatin, paclitaxel and vincristine neurotoxic


Citation:

Barriers in treating diabetes with cancer

- Altered renal function
- Hepatic impairment
- Variable dietary patterns
- Gastrointestinal disturbances
- Cyclical nature of chemotherapy
- Patient's position in oncological condition and prognosis

Choice of anti-diabetic agent

Drug class	Drugs	Advantages	Drawbacks	Contraindications
Biguanides	Metformin	Low cost Mild weight loss Oral pill	Abd bloating/ cramping Diarrhea Abd pain	Renal failure Liver failure (avoid in hepatic mets, HCC) Hold in acute illness, sepsis and when contrast-enhanced imaging is scheduled
Sulfonylureas	Glipizide Glimepiride Glyburide	Low cost Efficacious	Hypoglycemia (more pronounced with longer-acting) Weight gain	Renal failure Poor oral intake

Citation: ADA. Pharmacologic approaches to glycemic treatment. Sec 9, Standards of medical Care in Diabetes 2021.

Drug class	Drugs	Advantages	Drawbacks	Contraindications
Meglitinides	Repaglinide Nateglinide	Shorter acting, useful in steroid induced postprandial hyperglycemia	Frequency of taking med Hypoglycemia Limited efficacy	Use with caution in hepatic and renal failure due to increased risk of hypoglycemia
TZDs	Pioglitazone	Low cost Efficacious Improve insulin resistance	Edema Bone fractures Weight gain Slow onset of action	Liver failure (but can be used in NAFLD) Congestive heart failure
Alpha glucosidase inhibitors	Acarbose	Useful for post- prandial hypoglycemia	Abd pain Flatulence Diarrhea Low efficacy	Intestinal obstruction (GI tumors) Severe renal failure (GFR<30)

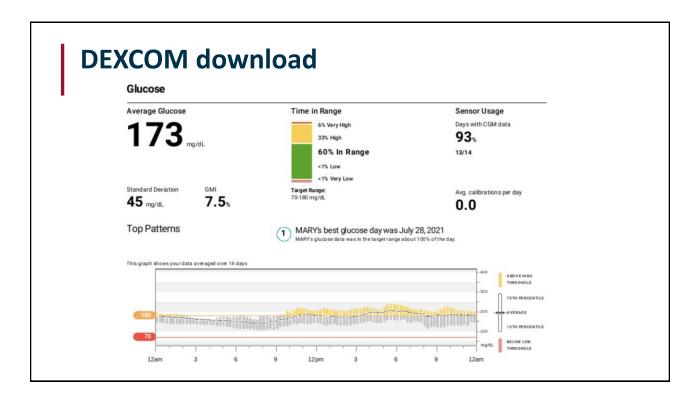
Citation: ADA. Pharmacologic approaches to glycemic treatment. Sec 9, Standards of medical Care in Diabetes 2021.

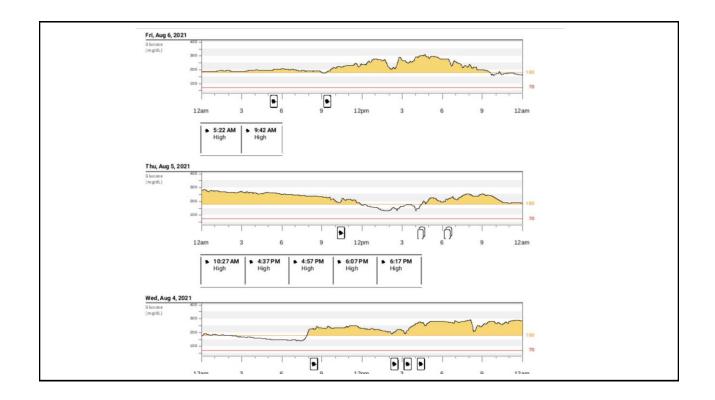
Drug class	Drugs	Advantages	Drawbacks	Contraindications
DPP-4 inhibitors	Sitagliptin Saxagliptin Linagliptin Alogliptin	Weight neutral Well tolerated	High cost Low potency ? Pancreatitis	Moderate to severe CKD and ESRD Heart failure (avoid use of saxagliptin)
GLP-1 receptor agonists	Liraglutide Dulaglutide Exenatide Semaglutide	Weight loss Once weekly injections CV and renal protective	Nausea, vomiting, abd pain Loss of appetite/ anorexia ? Pancreatitis Very high cost	Severe GI disease Anorexia/ cachexia Pancreatic cancers Previous h/o pancreatitis
SGLT-2 inhibitors	Canagliflozin Empagliflozin Dapagliflozin	Weight loss Highly effective CV and renal benefits	Volume depletion Dehydration, AKI Euglycemic DKA Genital infections High cost	Renal failure Increased risk of volume depletion

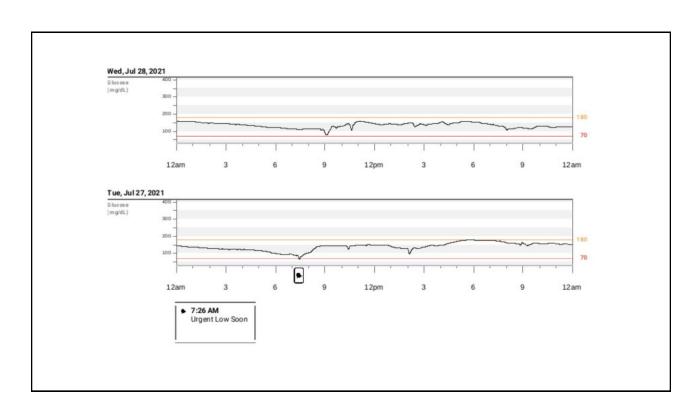
Citation: ADA. Pharmacologic approaches to glycemic treatment. Sec 9, Standards of medical Care in Diabetes 2021.

Drug class	Drugs	Advantages	Drawbacks	Contraindications
Basal insulins/ Long acting insulins	Glargine U- 100/U-300 Levemir Degludec NPH	- Universally effective - Anabolic effects - Flexible dosing - Safe with liver, renal or hepatic failure	Injection training	none
Short acting insulins	Aspart Lispro Faster aspart Lispro-aabc Regular insulin Inhaled insulin	- Universally effective - Anabolic effects - Flexible dosing - Post prandial hyperglycemia	- Injection training - Hypoglycemia - Weight gain - Patient reluctance to MDI - Requires patient/ caregiver education and involvement in care	none

Citation: ADA. Pharmacologic approaches to glycemic treatment. Sec 9, Standards of medical Care in Diabetes 2021.


Case discussion

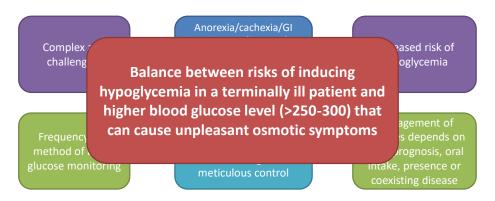

- 74 year old female with known h/o T2D, osteoporosis and diagnosed with pancreatic adenocarcinoma with mets to liver
- Previous chemo Gemcitabine/ Abraxane
- Referred for diabetes management
- Current regimen:
 - Tresiba
 - Humalog with meals and correctional scale
 - Glipizide
- Previously on metformin, now stopped



- Laboratory findings:
 - · AST/ALT and bil wnl
 - GFR has been fluctuating b/w 43 >60
- CT abd pelvis done in July 2021:
 - · Slightly increasing pancreatic mass
 - No discretely measurable abnormality to correlate with previously seen liver lesions, no new or progressive lesions seen
- Started on new chemotherapy with 5FU and liposomal irinotecan, gets it as a 3 day infusion and also receives dexamethasone
- Daughter calls after infusion that blood sugars have been running high what to do??

Artificial nutrition

- Very commonly used in cancer patients for malnutrition; enteral or parenteral
- Cause acute exacerbations in hyperglycemia
- Use diabetes specific formulas
- Insulin therapy:
 - Regular insulin added to TPN (initial dose 1: 10 gm carb)
 - SQ basal/bolus regimens for enteral feeding
 - Basal options once daily glargine or NPH/Levemir 2-3 doses
 - Bolus


 Lispro every 4 hrs or regular every 6 hrs.

Citation: Psarakis. Diabetes Spectrum. 2006

ADA. Sec 15, Standards of Medical care in Diabetes. 2021

Diabetes management at end-of-life

Citation: King et al., Q J Med 2012

Treatment options

- T1D and T2D on insulin therapy
 - Reduce dose of prandial insulin due to reduced oral intake
 - Low dose basal insulin if required
 - Minimize number of injections/ day

- T2D on oral agents
 - Reduce dose of sulfonylureas
 - Use short acting agents (glinides) or DPP IV inh to cover meals
 - MTF should be stopped
 - Avoid use of SGLT-2 inh due to risk of dehydration

Citation: King et al., QJ Med 2012

ADA. Older Adults. Section 12. Standards of medical care in diabetes 2021. Diabetes Care. 2021 **Plealth** Harold Hamm Diabetes Center

Education for patients and caregivers

- Comprehensive education of SMBG, insulin injection devices, injection techniques
- Understanding the cyclical nature of chemotherapy and steroids and their effect on BG
 - Education and instructions to patient and caregivers on insulin dose titration
- Avoidance of/response to hypoglycemia

Contact Information

Mailing Address

1000 N. Lincoln Blvd, Suite 2900 Oklahoma City, OK

73104

Email Address

Itivrita-Goyal@ouhsc.edu

Phone Number

405-271-3613

Diabetes Care Summit

Pearls:

- Time in range (TIR) is a key metric in the quality of glucose control.
- Utility of A1c is enhanced when TIR is used to complement glycemic data measured by CGM.
- TIR correlates inversely with HbA1c (TIR = A1c).
- Beginning evidence linking lower TIR to increased risk of long term diabetes complications.
- Different targets should be considered for older or higher-risk individuals, pediatric populations and pregnant women.

Advani, Diabetologia (2020) 63:242-252

Assessment of Glycemic Control

- Conventional Glucose Metrics (Diabetes Control Complication Trial –DCCT, 1998)*
 Intensive glucose management involves:
 - Self-monitoring blood glucose (SMBG) four times per day
 - 3:00 AM blood glucose check weekly
 - A1c measurement every 90 days
- Modern use of continuous glucose monitoring (CGM) began in year 2000
 - Retrospective CGM (professional, masked to user at time of wear)
 - Real-time CGM (rtCGM, personal, unmasked)
 - Intermittent scan CGM (isCGM, "flash" CGM)
 - Type 1 DM: lowered A1c, shortened duration of time in hypoglycemia & reduction of in moderate to severe hypoglycemia.
 - Type 2 DM: lowering A1c without increasing frequency of hypoglycemia

*Advani, Diabetologia (2020) 63:242-252 Battelino and Associates, Diabetes Care (2019) Volume 42: 1593-1603

Need for Metrics Beyond A1c

- A1C may not reflect the quality of glycemic control in the way of actionable insights with intra and inter day glucose variability. There is lack of information about acute hyperglycemic excursions.
- Accuracy of A1C can be affected by a range of physiologic or pathologic conditions such as chronic kidney disease, liver disease, hemoglobinopathies, blood loss or transfusions, and pregnancy.
- Utility of A1c is enhanced when TIR is used to complement to glycemic data measured by CGM

Battelino and Associates, Diabetes Care (2019) Volume 42: 1593-1603

The Fallacy of Average: How Using HbA_{1c} Alone to Assess Glycemic Control Can Be Misleading

Roy W. Beck, ¹ Crystal G. Connor, ¹ Deborah M. Mullen, ² David M. Wesley, ^{2,3} and Richard M. Bergenstal ²

Diabetes Care 2017;40:994-999 | https://doi.org/10.2337/dc17-0636

N = 387 participants from 3 randomized control trials T1DM = 315 T2DM= 72 CGM device used was DEXCOM G4 to collect 13 weeks CGM data

Relationship between A1c and CGM mean glucose correlation

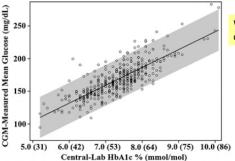
The Fallacy of Average: How Using HbA_{1c} Alone to Assess Glycemic Control Can Be Misleading

Diabetes Care 2017;40:994–999 | https://doi.org/10.2337/dc17-0636

Roy W. Beck, ¹ Crystal G. Connor, ¹ Deborah M. Mullen, ² David M. Wesley, ^{2,3} and Richard M. Bergenstal ²

A1c Derived Average Glucose (ADAG), 2006-2007

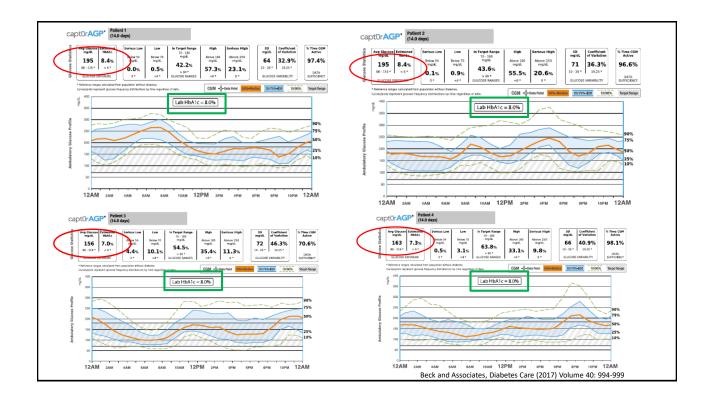
13 days of CGM measurements 39 days of Fingerstick blood glucose (FSBG) ADA & American Association of Clinical Chemistry Strong correlation (r=0.92) to justify reporting both A1c results and estimated average glucose


Table 1—Range of mean glucose concentrations for observed HbA_{1c} levels in pooled data from three recent studies* and the ADAG study

	Estimated mean glucose concentration (mg/dL) for a given HbA _{1σ} 95% Cl†			
HbA _{1c} , % (mmol/mol)	Current study* (N = 387)	ADAG study (N = 507)		
6 (42)	101–163	100-152		
7 (53)	128-190	123-185		
8 (64)	155–218	147–217		
9 (75)	182-249	170-249		
10 (86)	209–273	193–282		

^{*}The three studies from which data were obtained using the Dexcom G4 Platinum CGM System with an enhanced algorithm, software 505, pooled for the analyses herein are refs. 15, 16, and 28 (ClinicalTrials.gov identifiers NCT02282397, NCT02282397, and NCT02258373, respectively). †95% CI for a patient's mean glucose concentration for a measured HbA_{3c} level.

Table 6 (eAG)	5.1—Estimated	average glucose		
A1C (%)	mg/dL*	mmol/L		
5	97 (76–120)	5.4 (4.2-6.7)		
6	126 (100-152)	7.0 (5.5-8.5)		
7	154 (123-185)	8.6 (6.8-10.3)		
8	183 (147-217)	10.2 (8.1-12.1)		
9	212 (170-249)	11.8 (9.4-13.9)		
10	240 (193-282)	13.4 (10.7-15.7)		
11	269 (217-314)	14.9 (12.0-17.5)		
12	298 (240-347)	16.5 (13.3-19.3)		


Data in parentheses are 95% CI. A calculator for converting A1C results into A6A, in either mg/dL or mmol/L, is available at professional.diabetes.org/eAG. "These estimates are based on ADAG data of ~2,700 glucose measurements over 3 months per A1C measurement in 507 adults with type 1, type 2, or no diabetes. The correlation between A1C and average glucose was 0.92 (6,7). Adapted from Nathan et al. (6).

Wide range of CGM-measured mean glucose concentration for a given A1c value

Figure 1—Plot of CGM-measured mean glucose concentration vs. laboratory-measured HbA_{1c} . The shaded area represents the 95% prediction interval (analogous to an individual CI) for a patient's mean glucose concentration for a measured HbA_{1c} level, demonstrating the wide range of mean glucose concentration values that are possible for any HbA_{1c} value.

Beck and Associates, Diabetes Care (2017) Volume 40: 994-999

The Fallacy of Average: How Using HbA_{1c} Alone to Assess Glycemic Control Can Be Misleading

Roy W. Beck, ¹ Crystal G. Connor, ¹ Deborah M. Mullen, ² David M. Wesley, ^{2,3} and Richard M. Bergenstal ²

Diabetes Care 2017;40:994-999 | https://doi.org/10.2337/dc17-0636

Summary of findings:

- Results are quite similar to ADAG study: wide range of measured mean glucose concentration for a given A1c value
- Estimating glycemic control by HbA1c alone may not be accurate for some patients.
- Mean glucose itself is an average, and different degrees of glycemic variability and many different glycemic patterns could produce similar mean glucose concentrations and similar HbA1c levels.

Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

Table 2-Standardized CGM metrics for clinical care: 2019 1. Number of days CGM worn (recommend 14 days) (42,43) 2. Percentage of time CGM is active (recommend 70% of data from 14 days) (41,42) 3. Mean glucose 4. Glucose management indicator (GMI) (75) 5. Glycemic variability (%CV) target ≤36% (90)* 6. Time above range (TAR): % of readings and time > 250 mg/dL Level 2 (>13.9 mmol/L) 7. Time above range (TAR): % of readings and time 181-250 mg/dL Level 1 (10.1-13.9 mmol/L) 8. Time in range (TIR): % of readings and time 70–180 mg/dL (3.9-10.0 mmol/L) In range $9.\,Time\,below\,range\,(TBR):\,\%\,of\,readings\,and\,time\,54-69\,mg/dL$ (3.0-3.8 mmol/L) Level 1 10. Time below range (TBR): % of readings and time \leq 54 mg/dL (<3.0 mmol/L) Level 2

CV, coefficient of variation. *Some studies suggest that lower %CV targets (<33%) provide additional protection against hypoglycemia for those receiving insulin or sulfonylureas (45,90,91).

Core CGM metrics streamlined for use in clinical practice based on expert opinion of this international consensus group.

Of 14 core metrics, the panel selected 10 metrics that may be most useful in clinical practice.

70% use of CGM for 14 days correlates strongly with 3 months mean glucose, time in ranges metrics and hyperglycemia metrics.

Goal of effective and safe glucose control is to increase TIR while decreasing TBR.

Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

Use of Ambulatory Glucose Profile (AGP) for CGM report

Beck et al. (26)) (n = 545 participants with	type 1 diabetes)	Vigersky and McMaho participants with type 1	
TIR 70–180 mg/dL (3.9–10.0 mmol/L)	A1C, % (mmol/mol)	95% CI for predicted A1C values, %	TIR 70-180 mg/dL (3.9-10.0 mmol/L)	A1C, % (mmol/mol)
20%	9.4 (79)	(8.0, 10.7)	20%	10.6 (92)
30%	8.9 (74)	(7.6, 10.2)	30%	9.8 (84)
40%	8.4 (68)	(7.1, 9.7)	40%	9.0 (75)
50%	7.9 (63)	(6.6, 9.2)	50%	8.3 (67)
60%	7.4 (57)	(6.1, 8.8)	60%	7.5 (59)
70%	7.0 (53)	(5.6, 8.3)	70%	6.7 (50)
80%	6.5 (48)	(5.2, 7.8)	80%	5.9 (42)
90%	6.0 (42)	(4.7, 7.3)	90%	5.1 (32)
very 10% increase in TIR	= ~0.5% (5.5 mmol/mol) /	A1C reduction	Every 10% increase in TIR (8.7 mmol/mol) A1C red	

with subjects with type 1 diabetes vs. RCTs with subjects with type 1 or type 2 diabetes with CGM and SMBG).

Diabetologia (2020) 63:242–252 https://doi.org/10.1007/s00125-019-05027-0

REVIEW

Positioning time in range in diabetes management

Andrew Advani¹

Received: 8 April 2019 / Accepted: 21 August 2019 / Published online: 7 November 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

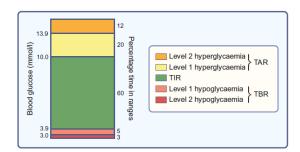
Time in range (TIR) is not synonymous to upper and lower limits of "normal" glucose values.

Choice of the upper and lower limits are partly pragmatic.

Outside pregnancy range, most DM1 are unable to spend most of the day between 70 to 140 mg/dl.

Upper limit of TIR (< 180) is aligned to recommended upper limit of post prandial glucose.

Lower limit of TIR (> 70) refers to the upper limit of definition of hypoglycemia, the point where counter regulatory hormone release generally begins.


Diabetologia (2020) 63:242–252 https://doi.org/10.1007/s00125-019-05027-0

REVIEW

Positioning time in range in diabetes management

Andrew Advani¹

Received: 8 April 2019 / Accepted: 21 August 2019 / Published online: 7 November 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Time Above Range (TAR): subdivided into > 180 (level 1) and > 250 (level 2)

Time Below Range (TBR) subdivided into < 70 (level 1) and < 54 (level 2)

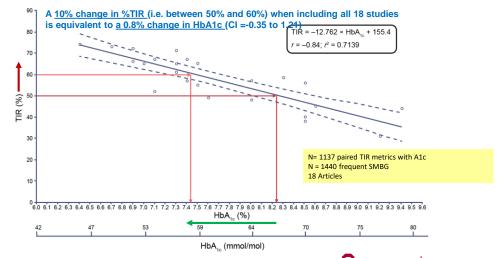
Subdivision is based on recent consensus recommendations as to the adverse consequences of glucose < 54 (decreased symptom awareness, increased risk of hypoglycemia and increased mortality risk) and glucose > 250 (increased risk of diabetes ketoacidosis, higher likelihood of long term complications).

Correlation between TIR with HbA1c

DABETES TECHNOLOGY & THERAPEUTICS Volume 21, Norther 2, 2019
ODI: 10.1068/sis.2018.0310

The Relationship of Hemoglobin A1c to Time-in-Range in Patients with Diabetes

Robert A. Vigersky, MD and Chantal McMahon, PhD


The Relationships Between Time in Range, Hyperglycemia Metrics, and HbAlc

Roy W. Beck, MD, PhD¹, Richard M. Bergenstal, MD², Peiyao Cheng, PhD¹, Craig Kollman, PhD¹, Anders L. Carlson, MD², Mary L. Johnson², RN, CDE, and David Rodbard, MD³

Journal of Diabetes Science and Technology 2019, Vol. 13(4) 614–626 © 2019 Diabetes Technology Society Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1932296818822496 journals-sagepub.com/home/dst

SSAGE

The relationship between ${\rm HbA_{1c}}$ and per cent TIR derived using paired ${\rm HbA_{1c}}$ and TIR data from various clinical trials

Andrew Advani (2020) Diabetologia DOI 10.1007/s00125-019-05027-0 ©2019 Mary Ann Liebert, Inc. Adapted and reprinted from Vigersky and McMahon with permission

ne 21, Number 2, 2019 ry Ann Liebert, Inc. 10,1089/dia.2018.0310

ORIGINAL ARTICLE

The Relationship of Hemoglobin A1c to Time-in-Range in Patients with Diabetes

70% 80%

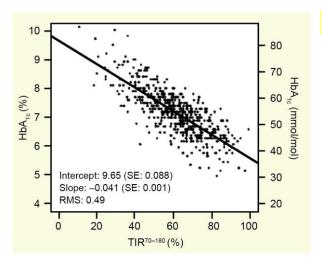
90%

100%

Robert A. Vigersky, MD and Chantal McMahon, PhD

AT EACH DECILE OF TIME-IN-RANGE PER EQUATION IN THE FIGURE HbA1c (%) Time-in-range HbA1c (mmol/mol) 0% 12.1 10% 11.4 101 92 20% 10.6 84 75 67 59 50 42 32 30% 9.8 9.0 40% 50% 60%

5.1


4.3

23

TABLE 2. HEMOGLOBIN A1C IN % AND MMOL/MOL

TIR correlates inversely with HbA1c (\uparrow TIR = A1c).

Variability in the relationship between TIR and HbA_{1c}

N= 545 adults with Type 1 DM 4 randomized control trials

The graph illustrates that whereas there is an inverse linear relationship between TIR and A1c, a wide range of HbA1c values may equate with any given TIR.

Andrew Advani (2020) Diabetologia DOI 10.1007/s00125-019-05027-0 © 2019 SAGE publications. Adapted from Beck et al with permission

Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

Diabetes Care 2019;42:1593–1603 | https://doi.org/10.2337/dci19-0028

Beck et al. (26)) (n = 545 participants with	type 1 diabetes)	Vigersky and McMaho participants with type 1	
TIR 70–180 mg/dL 3.9–10.0 mmol/L)	A1C, % (mmol/mol)	95% CI for predicted A1C values, %	TIR 70–180 mg/dL (3.9–10.0 mmol/L)	A1C, % (mmol/mol)
20%	9.4 (79)	(8.0, 10.7)	20%	10.6 (92)
30%	8.9 (74)	(7.6, 10.2)	30%	9.8 (84)
40%	8.4 (68)	(7.1, 9.7)	40%	9.0 (75)
50%	7.9 (63)	(6.6, 9.2)	50%	8.3 (67)
60%	7.4 (57)	(6.1, 8.8)	60%	7.5 (59)
70%	7.0 (53)	(5.6, 8.3)	70%	6.7 (50)
80%	6.5 (48)	(5.2, 7.8)	80%	5.9 (42)
90%	6.0 (42)	(4.7, 7.3)	90%	5.1 (32)
very 10% increase in TIR	= ~0.5% (5.5 mmol/mol) /	A1C reduction	Every 10% increase in TIR (8.7 mmol/mol) A1C rea	

Battelino and Associates, Diabetes Care (2019) Volume 42: 1593-1603

Beginning evidence linking lower TIR to increased risk of long term diabetes complications

Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes

Diabetes Care 2018;41:2370-2376 | https://doi.org/10.2337/dc18-1131

Jingyi Lu,¹ Xiaojing Ma,¹ Jian Zhou,¹ Lei Zhang,¹ Yifei Mo,¹ Lingwen Ying,¹ Wei Lu,¹ Wei Zhu,¹ Yuqian Bao,¹ Robert A. Vigersky,^{2,3} and Weiping Jia¹ Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes

Diabetes Care 2018;41:2370-2376 | https://doi.org/10.2337/dc18-1131

Figure 1—Prevalence of DR by severity, as a function of TIR quartile.

N = 3262 Adults with Type 2 DM January 2005 to February 2012 Data from 72 hours CGM

Retinopathy graded according to international classification of Diabetic Retinopathy

Beginning evidence linking lower TIR to increased risk of long term diabetes complications

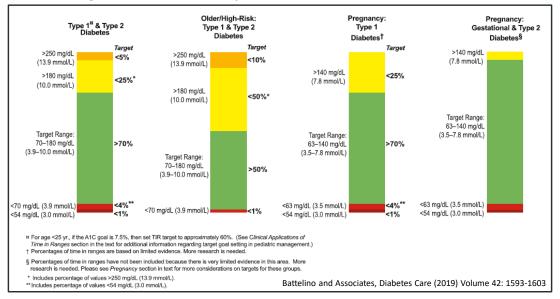
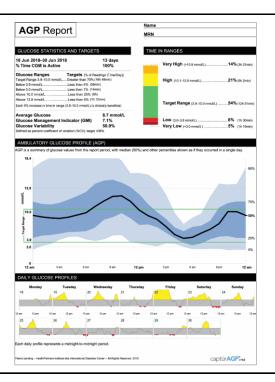
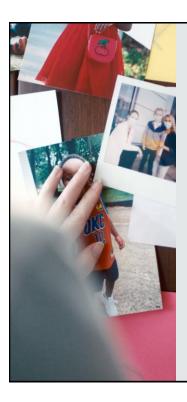

Metrics Derived from Continuous Glucose Monitoring (CGM)

Table 2—Standardized CGM metrics for clinical care: 2019 1. Number of days CGM worn (recommend 14 days) (42,43)		
Percentage of time CGM is active (recommend 70% of data from 14 days) (41,42)		
3. Mean glucose		
4. Glucose management indicator (GMI) (75)		
Glycemic variability (%CV) target ≤36% (90)*		
6. Time above range (TAR): % of readings and time >250 mg/dL (>13.9 mmol/L)	Level 2	
7. Time above range (TAR): % of readings and time 181–250 mg/dL (10.1–13.9 mmol/L)	Level 1	
8. Time in range (TiR): % of readings and time 70–180 mg/dL (3.9–10.0 mmol/L)	In range	
9. Time below range (TBR): % of readings and time 54–69 mg/dL (3.0–3.8 mmol/L)	Level 1	
10. Time below range (TBR):% of readings and time < 54 mg/dL (<3.0 mmol/L)	Level 2	
Use of Ambulatory Glucose Profile (AGP) for CGM report		
CV, coefficient of variation. *Some studies suggest that lower %CV targets ($<$ 33%) provide additional protection against hypoglycemia for those receiving insulin or sulfonylureas (45,90,91).		

Battelino and Associates, Diabetes Care (2019) Volume 42: 1593-1603




Different targets should be considered for older or higher-risk individuals, pediatric populations and pregnant women

Ambulatory glucose profile (AGP) showing time in ranges as a stacked bar in the top right corner

Andrew Advani (2020) Diabetologia DOI 10.1007/s00125-019-05027-0 © 2019 International Diabetes Center at Park Nicollet, Minneapolis, MN. Used with permission. See AGPreport.org for more information

Take Home:

- Time in range (TIR) is a key metric in the quality of glucose control.
- Utility of A1c is enhanced when TIR is used to complement glycemic data measured by CGM.
- TIR correlates inversely with HbA1c (↑TIR = ↓A1c).
- Beginning evidence linking lower TIR to increased risk of long term diabetes complications.
- Different targets should be considered for older or higher-risk individuals, pediatric populations and pregnant women.

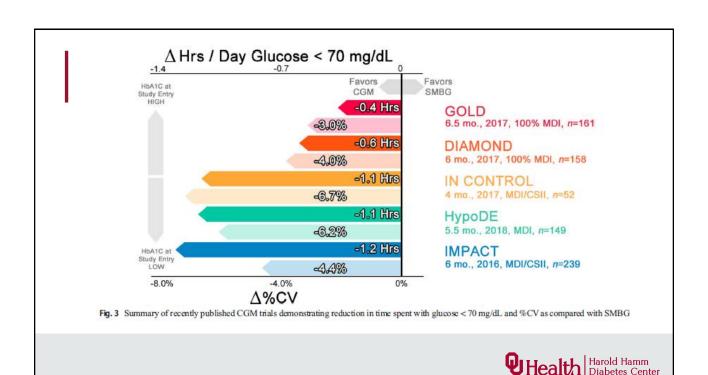
Thank You!

Diabetes Care Summit

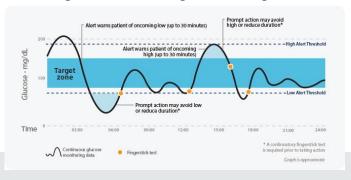
Objectives

- Review FDA approved personal diabetes technologies
- Discuss appropriate patient candidates for diabetes technologies
- · Review important aspects of device training
- Explain how to use device reports as a part of diabetes education

Diabetes Technology

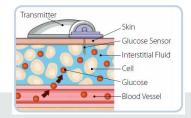

- Technology is rapidly changing, but there is no "one-size-fitsall" approach to technology use in people with diabetes
- Use of technology should be individualized based on a patient's needs, desires, skill level, and availability of devices

Personal Continuous Glucose Monitors (CGM)



CGM Use

- Provides trend information
- Provides direction & rate of change of glucose
- Provides alerts if glucose is traveling outside targets



http://professional.medtronicdiabetes.com/personal-cgm

CGM Use

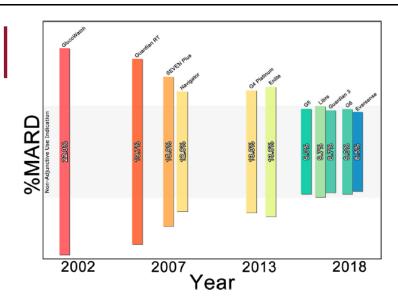
- CGM measures glucose in the interstitial fluid every 5 minutes
- Lag time of ~4-50 minutes between finger stick blood glucose & interstitial fluid. Rapid fluctuations in plasma glucose have been shown to accentuate this time lag.
- Blood glucose testing is still sometimes required
- Sensor information converted to a glucose value displayed on receiver, phone & or pump

Harold Hamm Diabetes Center

http://professional.medtronicdiabetes.com/personal-cgm

Medtronic Arrow	Dexcom Arrow	FreeStyle Libre Arrow	Trend Meaning	Glucose Value in 30 Minutes*
$\uparrow\uparrow\uparrow$	↑ ↑	NA	Glucose is rising very quickly, $>$ 3 mg/dL/min	>90 mg/dL higher
$\uparrow \uparrow$	1	1	Glucose is rising quickly, 2-3 mg/dL/min (>2 mg/dL/min with FreeStyle Libre)	60-90 mg/dL higher (>60 mg/dL for FreeStyle Libre)
↑	7	7	Glucose is rising 1-2 mg/dL/min	30-60 mg/dL higher
No arrow	\rightarrow	\rightarrow	Glucose is changing slowly, <1 mg/dL/min	<30 mg/dL
\	7	`	Glucose is falling 1-2 mg/dL/min	30-60 mg/dL lower
1 1	1	1	Glucose is falling quickly, 2-3 mg/dL/min (>2 mg/dL/min with FreeStyle Libre)	60-90 mg/dL lower (>60 mg/dL for FreeStyle Libre)
$\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	NA	Glucose is falling very quickly, >3 mg/dL/min	>90 mg/dL lower

^{*}Predicted 30-minute change in glucose is illustrative. NA, not applicable.



Miller, E. M. Using Continuous Glucose Monitoring in Clinical Practice. Clinical Diabetes Journals (2020) 38 (5).

Attribute	Libre CGM	Libre 2 CGM	Dexcom G6	Medtronic	Eversense
Insulin pump integration	No	No	Tandem T-slim X2 insulin pump as Basal IQ and Control IQ, Smart Pen (In Pen)	Guardian 3; compatible with 630G/670G/770G insulin pumps Guardian Connect: Smart Pen (In Pen)	No
Maximum wear time	14 days	14 days	10 days	7 days	3 months
FDA approved sites	Back of arm	Back of arm	Abdomen Upper buttocks (ages 2- 18 years)	Back of arm, abdomen	Back of arm
FDA approved ages (years)	18 and up	4 and up	2 and up	Guardian 3: 2 and up Guardian Connect: 7 and up	18 and up
Warm-up and calibration	1-hour warm up, No calibration	1-hour warm up, No calibration	2-hour warm up; No calibration	Up to 2-hour warm up, 2 calibrations per day + occasional diagnostic calibrations required	24-hour warm up and 4 calibrations within 6-36 hours at start up; then 2 calibrations per day
Interfering substances	Salicylic acid and Vitamin C	Vitamin C	Hydroxyurea	Acetaminophen, Hydroxyurea	Tetracycline
MARD (accuracy-the lower the better)	9.4%	9.4%	9.0% adults 7.7% pediatrics	9.64% with 3-4 calibrations per day; 10.55% with 1-2 calibrations per day	8.5%
FDA approved for insulin dosing	Yes	Yes	Yes	No	Yes

The Diabetes Care and Education Specialist's Role in Continuous Glucose Monitoring. ADCES Practice Paper. (March 2021).

The mean absolute relative difference (MARD) is currently the most common metric used to assess the performance of CGM systems. MARD is the average of the absolute error between all CGM values and matched reference values

Medtronic Guardian Connect (rtCGM)

- Adjunctive CGM
- FSBG calibration required 2-4 times daily
- Guardian Connect app on compatible iOS

or android device

- 14-75 years
- 7 day sensor wear- abdomen or back of upper arms
- · System can alert 10 to 60 min before high or low alert
- Links with Sugar IQ diabetes assistance app
- Carelink software

Kruger et al. Reference Guide for Integrating Continuous Glucose Monitoring into Clinical Practice. The Diabetes Educator. (2019) 43 (Suppl 1): 3S-20S.

Dexcom G6 (rtCGM)

- Non-Adjunctive CGM
- No FSBG calibration
- 2 years and older
- 10 day sensor wear
- Sensor worn on abdomen for adults and abdomen or upper buttocks for ages 2-17
- Customizable glucose alerts
- Can use receiver or smart phone with Dexcom G6 mobile app
- Dexcom Clarity

Kruger et al. Reference Guide for Integrating Continuous Glucose Monitoring into Clinical Practice. The Diabetes Educator. (2019) 43 (Suppl 1): 35-205.

Freestyle Libre (rtCGM)

- · Non Adjunctive CGM
- No FSBG calibrations
- 18 years and older
- 14 day sensor wear
- No alarms
- Sensor worn on back of upper arm
- Must scan sensor every 8 hours to maintain a constant stream of data
- Can use receiver or smart phone with Libre View app to scan sensor

FreeStyle LibreLink

L

Kruger et al. Reference Guide for Integrating Continuous Glucose Monitoring into Clinical Practice. The Diabetes Educator. (2019) 43 (Suppl 1): 35-205.

Freestyle Libre 2 (rtCGM)

- Non Adjunctive CGM
- 4 years and older
- Customizable glucose alarms
 - · Optional Low or high glucose alerts
 - · Signal loss alert
- Freestyle Libre 2 app now available for iOS

https://www.freestyle.abbott/us-en/products/freestyle-libre-2.html

Eversense (rtCGM)

- Adjunctive CGM
- FSBG calibrations 2-4 times daily
- 18 years and older
- Implanted sensor- 90 day use
- Worn on back of upper arm
- · Smart transmitter alerts

Kruger et al. Reference Guide for Integrating Continuous Glucose Monitoring into Clinical Practice. The Diabetes Educator. (2019) 43 (Suppl 1): 3S-20S

CGM Patient Training

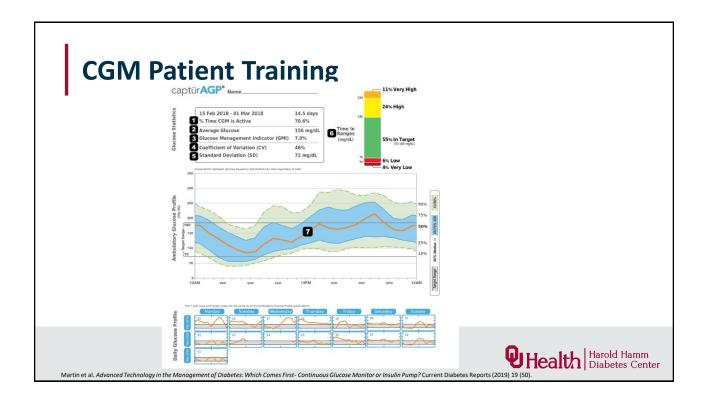
- Sensor site selection and insertion of the sensor
- Attachment (and charging) of the transmitter to the sensor, if required
- Required taping/securing of the sensor/transmitter
- Connect of the transmitter to the receiver
- · Difference between SG and BG
- Understanding CGM data and trends
- Calibration including timing, frequency and importance of accurate meter/finger stick technique if required

The Diabetes Care and Education Specialist's Role in Continuous Glucose Monitorina, ADCES Practice Paper, (March 2021

CGM Patient Training

- Setting and managing alerts including high alert, low alert, high snooze, low snooze, rise rate, fall rate, and predictive alerts
- Support with coping and problem solving related to individual behavioral issues that can improve management
- Possible interference of products ie acetaminophen, salicylic acid and high-doses vitamin C
- Education to prevent overcorrection of high glucose
- · Sharing data
- · Understanding CGM reports including the AGP and TIR

The Diabetes Care and Education Specialist's Role in Continuous Glucose Monitoring. ADCES Practice Paper. (March 2021)



CGM Patient Training

D in Download Data	Key metrics, AGP, day by day or spaghetti graph Start with global overview; what AGP, key metrics mean, ask what the person learned/what is going well with self-management
A B Assess Safety	Hypoglycemia- identify times below range, % time in hypoglycemia, # events Interactive discussion: possible causes and solutions
T 🕏 Time in Range	Focus on the positive- identify days or times where time in range is highest Interactive discussion: possible causes, solutions, and adjustments to self-management
A Areas to Improve	Hyperglycemia- Identify times above range, % time in hyperglycemia, # events Interactive discussion: possible causes, solutions, and adjustments to self-management
A Plan	Develop collaboratively with the person with diabetes

The Diabetes Care and Education Specialist's Role in Continuous Glucose Monitoring. ADCES Practice Paper. (March 2021)

Insulin Pump Therapy (CSII)

- Continuous Subcutaneous Insulin Injection (CSII) insulin pump mimics the physiology of the pancreas
- Bolus insulin delivery
- Basal insulin delivery
- Reservoir filled with insulin
- Infusion set
- Worn 24 hours per day
- · Delivers rapid-acting insulin

https://www.medtronicdiabetes.com/treatments/insulin-pump-therapy

Adults & CSII

- CSII may be considered an option for all adults with type 1 DM, adults with type 2 DM on MDI, and other forms of diabetes resulting in insulin deficiency who are able to safely manage the device
- Sensor-augmented pump therapy with automatic low glucose suspend may be considered in adults with type 1 diabetes to prevent/mitigate episodes of hypoglycemia
- Automated insulin delivery systems may be considered in adults with type 1 diabetes to improve glucose control

Diabetes Technology: Standards of Medical Care in Diabetes-2021. Diabetes Care (2021) 44 (Suppl. 1): \$85-\$99.

Pump Candidates

- Realistic expectations of the capabilities of pump therapy
- Demonstration of independent diabetes management and knowledge of the basics of diabetes education
- Physical ability to view the pump screen and hear the arms along with dexterity skills
- Emotional stability and adequate emotional support
- Adequate insurance benefits or personal resources to afford the cost of the pump and supplies
- Ability to problem solve potential challenges with the pump
- Capacity to learn, practice and understand insulin pump therapy

Continuous Subcutaneous Insulin Infusion (CSII) Without and With Sensor Integration, ADCES Practice Paper, (March 2021)

Pump Model Considerations

- · Complexity of the pump relative to the user's abilities
- Water resistant
- Patch pump or pump with tubing
- Does it link to CGM?
- Does the pump respond to sensor data by adjusting basal rate? Correctional insulin? Suspend prior to low?
- Can the patient read the pump on-screen text or hear the pump alerts?
- Does the pump hold enough insulin to last the patient 2-3 days?
- Which brands are covered by the patients insurance?

Continuous Subcutaneous Insulin Infusion (CSII) Without and With Sensor Integration. ADCES Practice Paper. (March 2021)

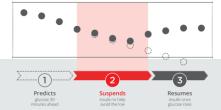
Omnipod

- · Patch insulin pump
- No tubing
- 200 unit reservoir
- Pod includes cannula
- All programming done via DASH or Eros PDM
- Food data base
- Integrated Freestyle glucose meter (Eros)
- DASH connected with Bayer Contour glucose meter
- · No CGM integration
- · Approved for ages 2 and older

https://www.myomnipod.com/DASH_Update

Tandem t-slim X2

- Sensor augmented pump (Basal IQ) or automated insulin delivery system (Control IQ)
- Displays data from Dexcom G6 CGM
- Pump with tubing
- Bright, full-color touchscreen
- · Compact-thin dimensions
- Charges, no disposable batteries
- No linked BG meter
- 300 unit reservoir
- · Approved for ages 6 and older



https://www.tandemdiabetes.com/products/t-slim-x2-insulin-pump

Tandem t-slim X2 with Basal IQ

- Predicts glucose levels 30 minutes ahead based on 3 of the last 4 consecutive CGM readings
- If the glucose level is predicted to be less than 80 mg/dL in 30 min., or if a CGM reading falls below 70 mg/dL, insulin delivery is suspended. Insulin delivery resumes as soon as sensor glucose values begin to rise
- Insulin may be suspended for a minimum of 5 minutes and a maximum of 2 hours within a 2.5-hour rolling window

Tandem t-slim X2 with Control IQ

- Control IQ algorithm designed to increase time in range (70-180 mg/dl)
- Automatically adjusts basal insulin to prevent high or low glucose
- Delivers automatic correction boluses to bring down high glucose
- Layered on top of user's pump settings
- Uses Dexcom CGM values to predict glucose levels 30 minutes ahead and adjusts insulin accordingly
- Optional settings for sleep and exercise activities that adjust treatment ranges

Harold Hamm Diabetes Center

https://www.tandemdiabetes.com/products/t-slim-x2-insulin-pump/control-iq

Tandem t-slim X2 with Control IQ

180 —	♦ Delivers	Delivers an automatic correction bolus if sensor glucose is predicted to be above 180 mg/dL
160 —	♠ B Increases	Increases basal insulin delivery if sensor glucose is predicted to be above 160 mg/dL
112.5 —	♠ B Maintains	Maintains active Personal Profile settings
70 -	♦ B Decreases	Decreases basal insulin delivery if sensor glucose is predicted to be below 112.5 mg/dL
mg/dL		Stops basal insulin delivery if sensor glucose is predicted to be below 70 mg/dL

https://www.tandemdiabetes.com/products/t-slim-x2-insulin-pump/control-iq

Medtronic 670G & 770G


- Sensor Augmented Pump with low glucose suspend or predictive low glucose suspend (Manual Mode) or Automated Insulin Delivery (Automode)
- · Pump with tubing
- 300 unit reservoir
- · Displays data from the Guardian Sensor 3 CGM
- 670G approved for ages 7 and older
- 770G approved for ages 2 and older
- · Contour Next linked meter for 670G
- Accu-Check Guide linked meter for 770G



https://www.medtronicdiabetes.com/products/minimed-770g-insulin-pump-system

Medtronic 670G & 770G Suspend Before Low

https://professional.medtronicdiabetes.com/resources-download-library

Medtronic 670G & 770G Automode

- · Auto adjusts basal insulin every 5 min based on sensor glucose
- Fixed glucose target of 120 mg/dl but 150 mg/dl can be turned on for a temporary target
- Required user input includes carbohydrate amount for meals, and BGs to deliver correction bolus and to calibrate the sensor
- Pump will suggest a correction based on a blood glucose target of 150 mg/dL with a correction dose that is calculated by the algorithm every 24 hours
- Only modifiable parameters in Automode include active insulin time and the insulin to carbohydrate ratio

Weaver et al. The Hybrid Closed Loop System: Evolution and Practical Applications. Diabetes Technology & Therapeutics. (2018) 20 (Suppl 2): S2-16-S2-23

In Pen Smart Insulin Pen

- Blue tooth smart insulin pen-lasts one year
- Calculates insulin doses
- Syncs to an app that tracks each dose, when they were delivered, and active insulin time
- App compatible with iphone and android devices
- Temperature meter embedded inside
- Shares therapy data
- Integrates with Dexcom G6 and Guardian Connect CGM
- Compatible with Novolog, Humalog and Fiasp U-100 insulin cartridges

https://www.medtronic.com/us-en/healthcare-professionals/therapies-procedures/diabetes.html

Contact Information

Mailing Address

Harold Hamm Diabetes Center 1000 N. Lincoln Blvd. Ste. 3400 OKC, OK 73104

Email Address

christine-olson@ouhsc.edu

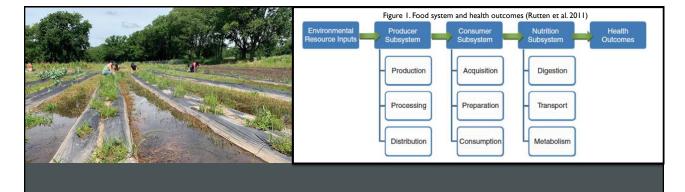
Phone Number

(405) 271-1000

Diabetes Care Summit

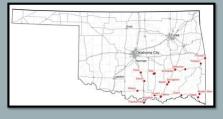
Breakout Session II:

Diabetes Prevention and Intervention in Tribal Communities



INTRODUCTION

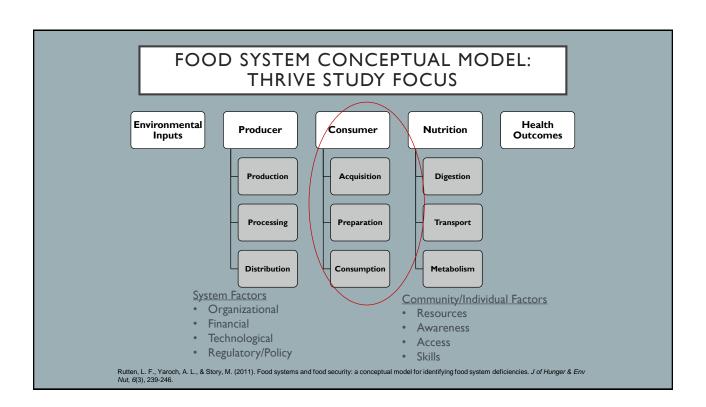
- Professor of Rural Health, Oklahoma State University Center for Health Sciences
- Director, Center for Indigenous Health Research and Policy
 - Education and Training
 - Research and Evaluation
 - Dissemination



INTERVENTION SCIENCE WITH INDIGENOUS COMMUNITIES

- Use Community Based Participatory Research (CBPR) orientation to address diet-related health disparities (i.e. diabetes, hypertension, obesity) within Indigenous communities
- Food system interventions

THRIVE STUDY PURPOSE: TO INCREASE HEALTHY FOOD ACCESS BY IMPROVING TRIBAL CONVENIENCE STORES



PRELIMINARY STUDIES: FOOD INSECURITY AND CHRONIC DISEASE AMONG NATIVES IN CHOCTAW AND CHICKASAW NATIONS

- -Conducted cross sectional survey of 513 Natives
- -Administered USDA 6-item short form Household Food Security Scale
- -58% of Natives surveyed were food insecure
- -Among those who were food insecure, the prevalence of **diabetes** (27.3% vs 18.8%), **obesity** (60.7% vs 45.8%), and **hypertension** (52.5% vs 42.5%) was higher compared to those who were food secure, even after adjustment for age, gender, education, income, and study site
- -More than 60% of Natives surveyed reported shopping for food at tribal convenience stores 3 or more times per week

Jernigan et al. "Food Insecurity and Chronic Diseases Among American Indians in Rural Oklahoma: The THRIVE Study", American Journal of Public Health 107, no. 3 (March L. 2017): pp. 441-446.

DESIGN AND METHODS

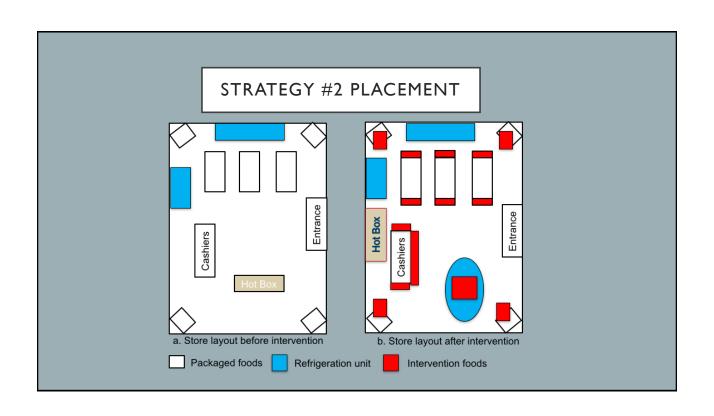
- Participatory research orientation
- Cluster control trial with eight stores (4 intervention/4 control)
- Longitudinal cohort study surveying Native shoppers (n= 1637) before and after the intervention
- Intervention strategies: product, placement, promotion, and pricing
 - Nation A: July 2016-April 2017 (9mos)
 - Nation B: June 2016-May 2017 (12mos)
- Outcomes:
 - Store: increased fruit/vegetable availability
 - store inventory and sales; nutrition environment measures scores
 - Individual: increased fruit/vegetable purchasing and intake
 - eating behaviors, self-efficacy, perceived nutrition environment, sociodemographics and exposure to intervention

Institute of Medicine. Committee on Prevention of Obesity in Children and Youth: Koplan JP, Liverman CT, Kraak VI, editors., Preventing Childhood Obesity: Health in th Balance. Washington, DC: National Academies Press: 2005

PHASE ONE: PRODUCT AVAILABILITY; BASELINE MEASURE OF STORE NUTRITION ENVIRONMENTS

Wetherill, M. et al.. (2018). Adaption and validation of the Nutrition Environment Measure Survey (NEMS) to assess tribal convenience stores in rural Oklahoma: the THRIVE study. Health Promotion Practice: E-pub head of print September 21, 2018.

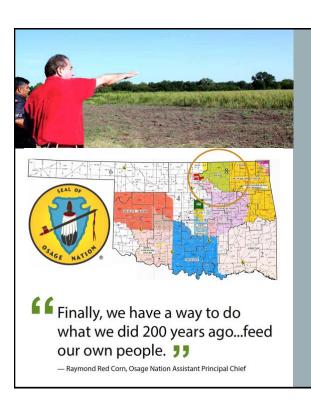
PHASE TWO: INTERVENTION STRATEGIES (PLACEMENT, PROMOTION, PRICING)


Jernigan, VB et al. (2018). Using Community-based Participatory Research to Develop Healthy Retail Strategies in Native American-Owned Convenience Stores: the THRIVE Study. Presenting Medicing Reports. Spn: (11): 148.153. PMID: PMC-6039850

STRATEGY #1 PRODUCT

Choctaw Nation Salad and Wraps

STRATEGY #4 PRICE

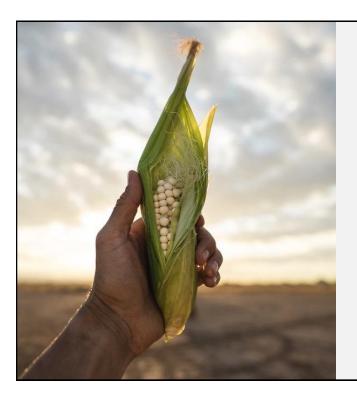


FINDINGS AND SUSTAINABILITY

- -All of our findings have been published, with study outcomes published in the American Journal of Public Health
- lo summarize, the intervention:
 - -Increased healthy food options (perceived and objective NEMS measures)
 - -Increased purchases of healthy foods
 - -Increased self-report of healthy food intake
 - -Like other studies that only target the environment, we did not see significant changes in **overall** dietary intake, **but we did change purchasing decisions**, **especially among those shopping more often**

Resulted in important policy changes: distributors for both Nations expanded suppliers and options

Next steps: expand intervention strategies, include behavioral change and traditional foods focus, increase local food options



FRESH STUDY ORIGINS

CBPR Partnership with Osage Nation

Began 2 years before application for NIMHD grant

Builds upon Bird Creek Farm Initiative and Osage Nation's vision to create a sustainable food system. Indigenous food sovereignty

INDIGENOUS FOOD SOVEREIGNTY

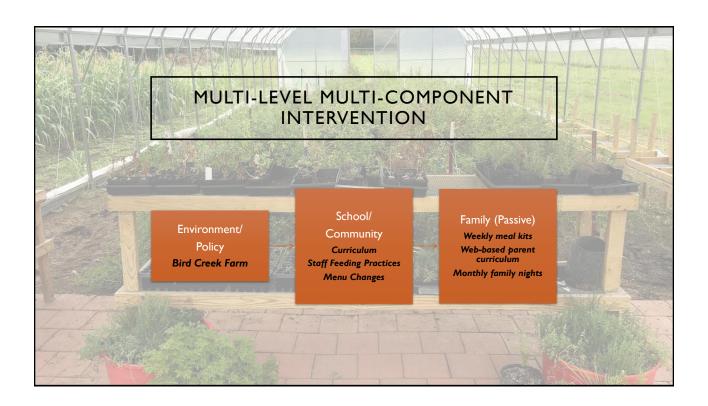
- The right and responsibility of Indigenous people to healthy and culturally appropriate foods produced through traditional Indigenous practices¹
- Supports communities in taking greater control over their food systems by increasing traditional and healthy food access and reducing dependence on packaged and fast foods²
- Mirrors public health efforts to address dietrelated disparities through food system change in other populations

¹Settee P, Shukla, S. Indigenous Food Systems: Concepts, Cases, and Conversations. Toronto Ontario: Canadian Scholars; 2020.

²Jernigan VBB. Addressing food security and food sovereignty in Native American communities. Health and Social Issues of Native American Women. 2012:113-132.

FRESH STUDY **GOAL**

- Develop a culturally relevant, multilevel, intervention and evaluate its efficacy in increasing vegetable and fruit intake and
- Create and disseminate a Web-based tribal readiness and capacity to improve

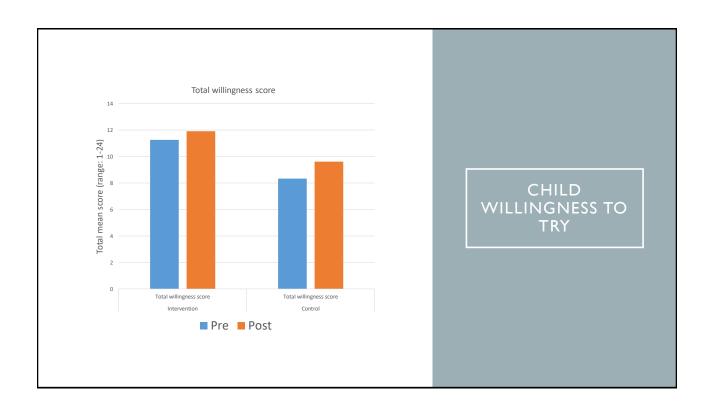

STUDY DESIGN, SETTING, AND OUTCOMES

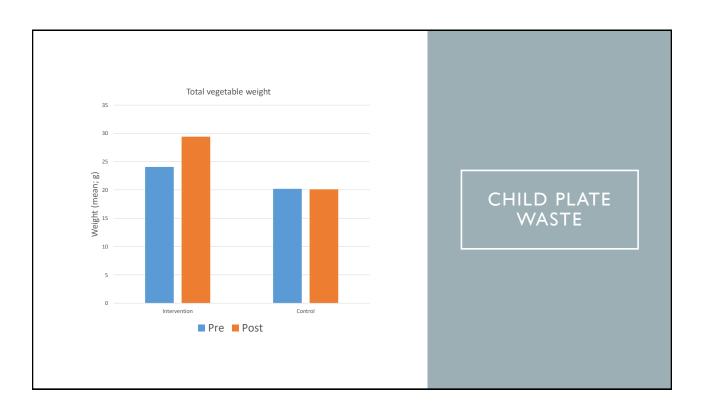
- Study Design: Multi-level, multi-component wait-list controlled trial
- Setting: Early Childhood Education (ECE) centers in 4 communities, total of 9 ECEs
- Inclusion criteria: American Indian, with a child enrolled in one of the ECEs, aged 3-5, and no plans of moving within the next year
- Intervention from Jan 2018-Dec 2018
 - 2 communities randomized to intervention group (5 ECEs) Received intervention in Spring 2018
 - 2 communities randomized to control group (4 ECEs) Received intervention in Fall 2018
 - Total participants: 369 (176 parent/caregivers; 193 children aged 3-6)
- Primary Outcomes:

 Increase fruit and vegetable willingness to try and intake in children
- Secondary Outcomes:

 Reduce food insecurity, Body Mass Index (BMI), and blood pressure (BP) (adults only), and increase vegetable and fruit intake in adults

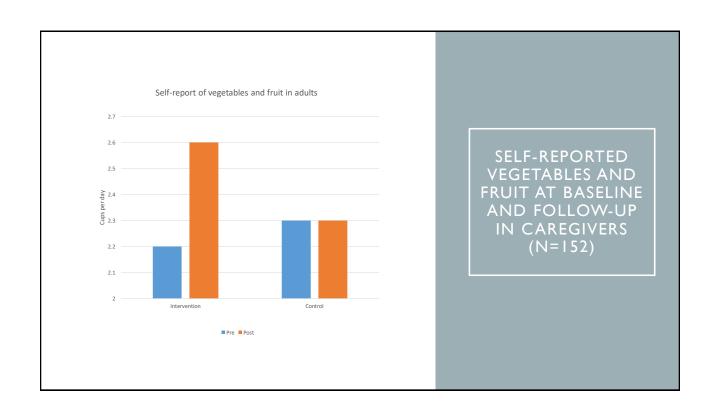
Community outcomes: Launch farm to feed children and inform policy

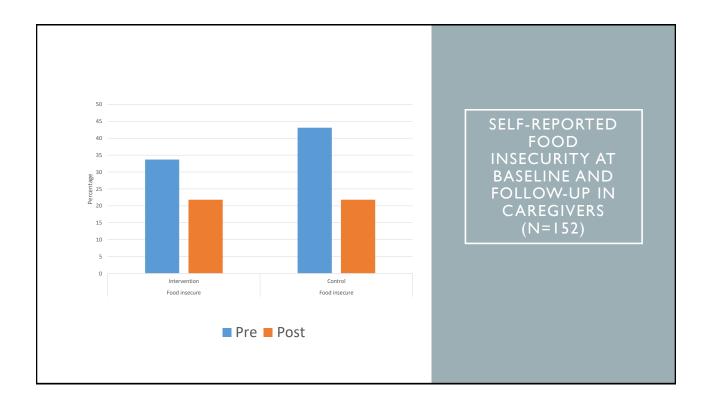

²Sleet, K, Sisson, S, Jernigan, VB. (2020). The Impact of Responsive Feeding Practice Training on Teacher Feeding Behaviors in Tribal Early Care and Education: The FRESH Study. Current Developments in Nutrition, 4(Supplement_1), 23-32.


³Sisson, S, Sleet, K, Rickman, R, Jernigan, VB. (2020). Impact of the 2017 Child and Adult Care Food Program Meal Pattern Requirement Change on Menu Quality in Tribal Early Care Environments: The FRESH Study. Current Developments in Nutrition, 4(Supplement_1), 12-22.

DATA COLLECTION

- Classroom and child measures:
 - Child willingness to try and plate waste measures at baseline, mid point, and post intervention
 - Weekly program implementation surveys completed by teachers to assess fidelity to the intervention
 - Site visits by university staff
- Menu measures:
 - Weekly menus collected during produce drop-off with modifications noted
 - Weekly menu surveys administered to cooks
 - Analysis of menus in prior years to compare changes
- Parent measures:
 - 24-hour dietary recalls and surveys were administered before and after intervention by trained university staff either in-person or via telephone
 - · Biometrics were completed before and after intervention by trained university staff





	Overall (N=176)	Intervention (N=94)	Control (N=82)	P-value
Age, years, mean (SD)	33.2 (7.1)	34.0 (7.3)	32.2 (6.8)	0.11
Female, %	91.8	90.3	93.5	0.64
Native American, %	56.5	66.7	44.2	0.005
Education, %				0.08
Some high school	4.1	4.3	3.9	
High school graduate/GED	41.2	35.5	48.1	
Technical/Vocational school	30.6	28.0	33.8	
College graduate or higher	24.1	32.3	14.3	
Annual household income, %				0.09
<u><</u> \$15,000	15.0	16.2	13.3	
\$15,001-30,000	25.6	18.3	34.5	
\$30,001-50,000	30.5	24.7	40.0	
> \$50,000	28.0	40.8	12.0	
Employed full or part time, %	67.1	75.3	57.2	
Marital status, %				0.94
Married	59.4	60.2	58.4	
Divorced/Separated	15.9	17.2	14.3	
Never married	14.7	12.9	16.9	
Partner/significant other	10.0	9.7	10.4	
Food assistance program participation, %				
Food Stamp benefits	10.8	12.8	8.5	0.47
Food Distribution benefits	2.3	2.1	2.4	1.0
Women, Infants, and Children	30.1	29.8	30.5	1.0

CAREGIVER FINDINGS: DEMOGRAPHICS

CAREGIVER FINDINGS CONT.

- Moderate and total physical activity were significantly higher among intervention group at follow-up compared to control
- Obesity and high blood pressure decreased slightly in intervention group from baseline to follow-up while increased in control though not significant

- We achieved launch of BCF and its continued development
- Tripled active usage of acres and food production
- Used data to advocate for policy and BCF was expanded by Osage Nation Congress in 2019
- We developed and disseminated the study information through a PBS series called "Blood Sugar Rising," which premiered on PBS April 15, 2020
- We were featured in the journal Nature for our CBPR approach
- Next steps are CSA to expand food production

(NIMHD Grant #) R01MD011266

Health and the American Indian OKLAHOMA CITY CLINIC WWW.okcic.com

Introduction

- Kaw/Osage
- * Raised in Cheyenne and Arapaho Country
- * Indian Health Service (IHS)-PCP
- Reside in Citizen Potawatomi Nation
- Work for Oklahoma City Indian Clinic (Urban Clinic)

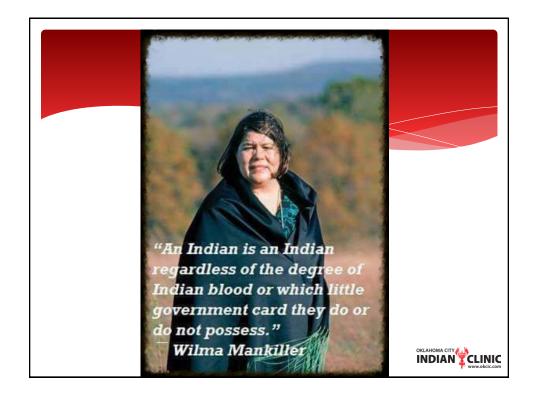
Outline

- 1. What is an American Indian?
- 2. Health History and Status of American Indians
- 3. Indian Health Service System and Successes
- 4. Future of American Indian Health Care
- 5. Questions/Discussions

What is an American Indian?

Native people of North America

- Native American (NA), Indigenous Peoples, First Nations, Alaska Natives(AN), American Indian (AI)
- * Within U.S.-
 - * 574 federally recognized tribes* (229-AK)
 - * 39 federally recognized tribes in Oklahoma
 - 66 state-only recognized tribes


Tribal Sovereignty- decisions about tribes are made with their participation and consent. (Government to government relationship)

McGirt v. Oklahoma(2020)

*does not include Native Hawaiians https://www.bia.gov/frequently-asked-questions

What it is like to be Indian

Reservation:

https://www.youtube.com/watch?v=OOWUDM1GBhk 3:09

What it means to be Indian:

https://www.youtube.com/watch?v=J2HeHShGD7k 6:10

Pre-Colonialism

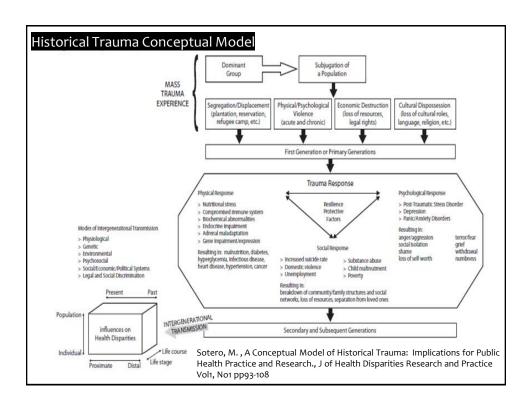
American Indians- Lived off Land

- Hunters, Gatherers, Gardeners
- * High Fiber, High physical activity, lean protein

INDIAN CLINIC

Removal/Relocation/Reservation

- Eastern Tribes sent to Oklahoma
- * Lifestyle
 - Diet (known game, fruits/vegetables)
 - Cultural tradition around geographic foods no longer available




Health Consequences

- American Indians not prepared/familiar with OK area foods/game
 - Food rations 2x per month
 - * (lard, flour, coffee, sugar, canned meat)
 - Created dependence (now known as commodities)
- Lower physical activity, fiber, high fat protein
- Total lifestyle loss
 - * High physical, cultural, emotional, social trauma

INDIAN CLINIC

Modern Day Quality of Life

- Socio-Economic Conditions
 - * lower end of SES scale
 - * high HS drop-out and unemployement rates
 - * often remote/rural
- * Lifestyle
 - diet-high fat/processed foods (inexpensive)
 - * exercise
 - * tobacco
- Genetics

AI/AN Health Disparities

Leading Causes of Death

- * Heart Disease
- Cancer
- Diabetes
- * Unintentional injuries

"Broad quality of life issues rooted in economic adversity and poor social conditions" (IHS) (genetic, lifestyle, environment)

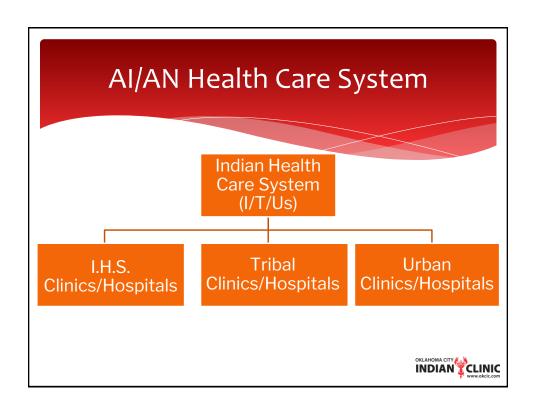
i.e. Navajo Nation (COVID-19)

Life expectancy is 5.5 years less than general population

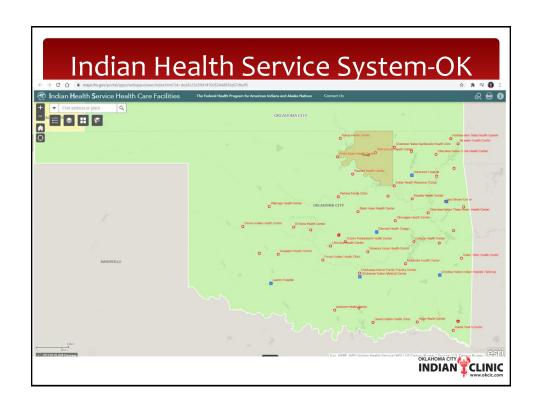
https://www.ihs.gov/newsroom/factsheets/disparities/#:~:text=These%20are%20broad%20quality%20of,deaths%20(2009%2 D2011).

Cardiometabolic Disease Statistics

- American Indian/Alaska Native *adolescents* are <u>30%</u> more likely than non-Hispanic white adolescents to be obese.¹
- American Indian or Alaska Native adults are 50% more likely to be obese than non-Hispanic whites.¹
- CVD is leading cause of death in Al²
 - a. 50% more likely to have CVD than caucasian
- Al have a greater chance of having DM than any other US racial group³
- 1. https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=4&lvlid=40
- https://www.ahajournals.org/doi/full/10.1161
- 3. https://www.cdc.gov/vitalsigns/aian-diabetes/index.html

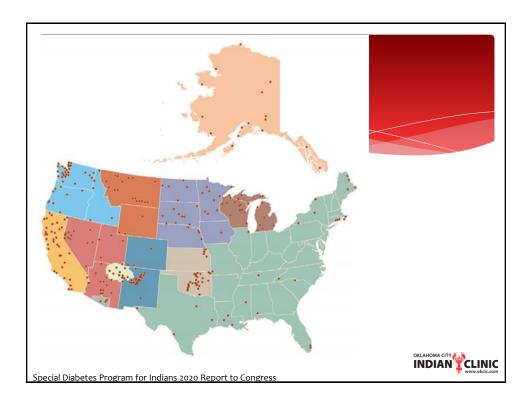


How is American Indian Health Addressed


- Private practices
- * VA
- * IHS*

*Required by Federal Law

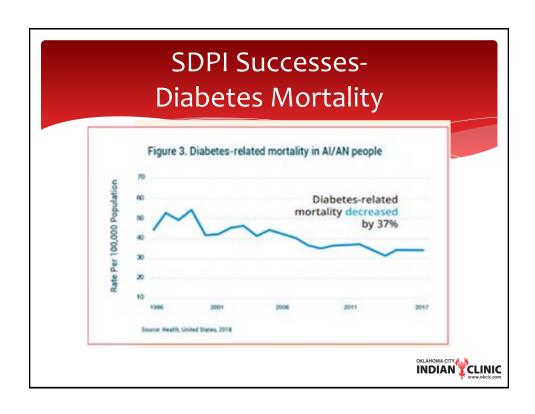
Indian Health Service System Services Dependent on location/provider Outpatient Inpatient Primary Care Speciality Care Basic Prevention Robust Preventive Services "Modern" Health Care Health Care William Freedom Freedom

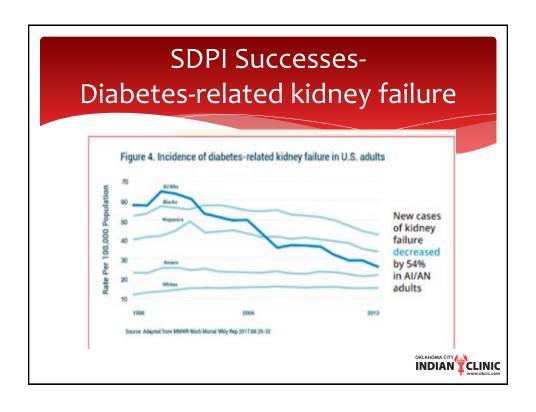


Special Diabetes Program for Indians (SDPI)

- Balanced Budget Act of 1997
 - * \$30 million per year (1998-2002)
 - * \$100 million per year (2001-2003)
 - * \$150 million per year (2004-present)
- Added Demonstration Projects (2004)
 - * Diabetes Prevention
 - * Healthy Heart
- * Supports 301 programs in 35 states=>708,000 patients

Special Diabetes Program for Indians 2020 Report to Congress




SDPI Efforts

- * Medications, strips, eyeglasses, shoes
- * Staff
 - Education (RD, CPT, RN, MSW, CDE)
 - * DSMT- diabetes education curriculum
 - * DPP- Diabetes Prevention Program (MEDICAID)
 - * Youth programs
 - afterschool programs, school break camps, evening/weekend events (PICS)
 - * Native Youth Preventing Diabetes
 - * Advocacy (Local, State and Federal)
 - * Oklahoma Inter-Tribal Diabetes Coalition
 - * OK State DM Caucus- legislation and regulation
 - * ADCES, ADA

Cultural Barriers in American Indian Health Care

- * Two-way judgement
 - * What an AI looks or acts like
- * Al providers get better communication
- * Younger generation more accepting

Al Specific Cultural Barriers

- * Female dominant (some tribes)
- * Difference in social courtesies
 - * Looking you in the eye
 - * Not commenting on instruction
 - * Sign as disrespect
- * Spiritual Belief System
 - * "white-man medicine"

Indian Health Service System Services

Dependent on location/provider

Inpatient Outpatient _____

Primary Care _____ **Speciality Care** Basic Prevention ——— Robust

Preventive Services

"Modern" Health Care Health Care

"Blended"

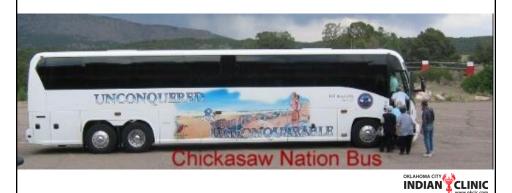
Muskogee Nation-Tulsa

Council Oak Comprehensive Health Care

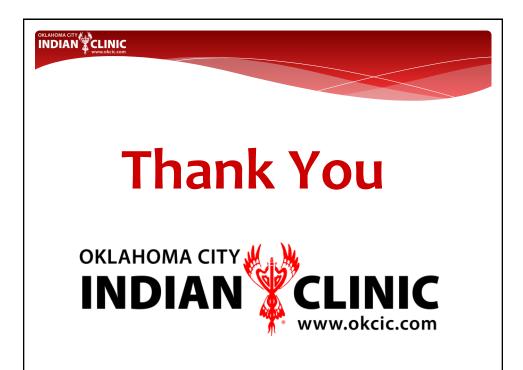
- -Specialty Care -Inpatient Care
- -Family Accomodations

Tribal Investments in Communities

Reducing health disparities by:


- * Investments in:
 - * Socioeconomic Factors
 - Schools (facilities, internet, equipment, scholarships)
 - Roads/bridges
 - * Housing
 - * Lifestyle Factors
 - * Drinking water
 - * Access to healthy foods
 - * Tobacco-free policies
 - * Health
 - * non- Al programming

Improving OK also improves tribes


Moving Forward

- Decrease in Fatalism
- Self-empowerment
- Momentum for better health

Questions?

Diabetes Care Summit 10 September 2021

SARS-CoV-2, COVID-19 and Diabetes: A New Bidirectional Disease?

Steven E. Kahn, M.B., Ch.B. VA Puget Sound Health Care System University of Washington Seattle, WA

Dualities of Interest

Advisory Board, Consulting and Lectures

Bayer Merck

Boehringer Ingelheim Novo Nordisk

Casma Therapeutics Pfizer

Eli Lilly Third Rock Ventures

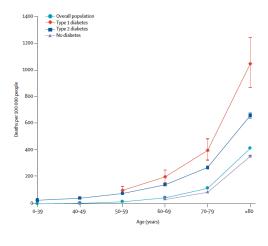
Intarcia

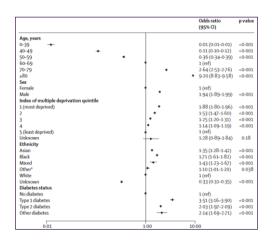
Outline

- Considerations in the need to find answers to a new disease entity
- 2. Epidemiology of the disease
- 3. Hyperglycemia in COVID-19 a "new" vs. "old" disease entity?
- 4. Response to medications in patients with diabetes real or unreal?
- 5. Post-Acute Sequalae of COVID-19 (Long COVID)

Outline

- Considerations in the need to find answers to a new disease entity
- 2. Epidemiology of the disease
- 3. Hyperglycemia in COVID-19 a "new" vs. "old" disease entity?
- 4. Response to medications in patients with diabetes– real or unreal?
- 5. Post-Acute Sequalae of COVID-19 (Long COVID)

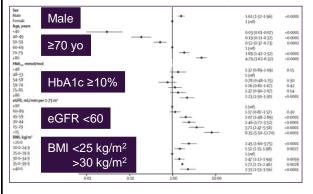

Some Words of Caution


- 1. Quality of peer review
- 2. Most studies are retrospective
- 3. Confounding by indication
- Meta-analyses may count individuals more than once
- Few or small randomized clinical trials (RCTs) of interventions

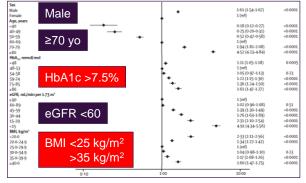
Outline

- Considerations in the need to find answers to a new disease entity
- 2. Epidemiology of the disease
- 3. Hyperglycemia in COVID-19 a "new" vs. "old" disease entity?
- 4. Response to medications in patients with diabetes– real or unreal?
- 5. Post-Acute Sequalae of COVID-19 (Long COVID)

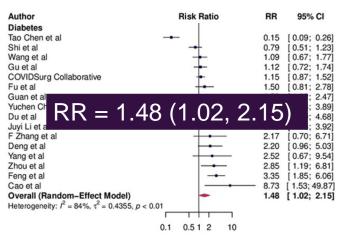
In-hospital Death for People with COVID-19 in England: March 1 to May 11, 2020



Barron E et al: Lancet Diabetes Endocrinol 8:813-822; 2020


Hazard Ratios for COVID-19 Related Death in People with Diabetes in England

Type 1 Diabetes Deaths/Number: 464/264,390


Holman N et al: Lancet Diabetes Endocrinol 8:823-833; 2020

Type 2 Diabetes
Deaths/Number: 10,525/2,874,020

March 1 to May 11, 2020

Association of Comorbid Diabetes and Mortality Risk from COVID-19

Ssentongo P et al: PLoS ONE 15(8): e0238215; 2020

Association of Comorbid Conditions and Mortality Risk from COVID-19

Cardiovascular Disease RR = 2.25 (1.60, 3.17)Hypertension RR = 1.82 (1.43, 2.32)Cerebrovascular Disease RR = 2.16 (0.97, 4.80)Chronic Kidney Disease RR = 3.25 (1.13, 9.28)Congestive Heart Failure RR = 2.03 (1.28, 3.21)

Ssentongo P et al: PLoS ONE 15(8): e0238215; 2020

Risk Factors for COVID-19 Hospitalization and Severe Disease in Children

Hospitalization

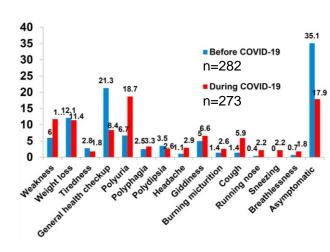
edical condition	Risk ratio (95% CI)	hospitalization	hospitalization
Type 1 diabetes	4.60 (3.91-5.42)		ю
Obesity	3.07 (2.66-3.54)		Hel
Cardiac and circulatory congenital anomalies	2.12 (1.83-2.45)		HH
Epilepsy, convulsions	1.97 (1.62-2.39)		H●H
Other specified status	1.96 (1.63-2.37)		H • H
Trauma and stressor-related disorders	1.82 (1.51-2.18)		HeH
Neurodevelopmental disorders	1.64 (1.47-1.83)		l e l
Type 2 diabetes	1.59 (1.30-1.95)		H+H
Depressive disorders	1.58 (1.34-1.87)		HHI .
Essential hypertension	1.51 (1.29-1.78)		HeH
Anxiety and fear-related disorders	1.47 (1.27-1.70)		HeH
Asthma	1.23 (1.13-1.34)		lel .
Tobacco-related disorders	1.15 (0.96-1.38)		● +
Other congenital anomalies	1.15 (0.93-1.41)	1	•
Esophageal disorders	1.14 (0.98-1.34)		H - H
Other upper respiratory disease	1.14 (0.89-1.45)	H	•
Sleep/wake disorders	1.09 (0.93-1.28)	ŀ	•+
Headache including migraine	1.06 (0.81-1.39)	⊢	•
43,465 COVID-19 patients; ≤18		0.3 Risk	1 ratio (95% CI)

Severe Illness When Hospitalized

Lower risk of : Higher risk of

ledical condition	Risk ratio (95% CI)	severe illness severe illness
Type 1 diabetes	2.38 (2.06-2.76)	H●H
Cardiac and circulatory congenital anomalies	1.72 (1.48-1.99)	Hell
Epilepsy, convulsions	1.71 (1.41-2.08)	⊩• ⊢
Obesity	1.42 (1.22-1.66)	H●H
Essential hypertension	1.39 (1.19-1.63)	HeH
Sleep/wake disorders	1.26 (1.09-1.45)	HeH
Other specified status	1.25 (1.07-1.47)	H●H
Type 2 diabetes	1.21 (0.98-1.49)	[• +
Tobacco-related disorders	1.16 (0.87-1.55)	H•-I
Asthma	1.09 (0.98-1.21)	i ⊕l
Esophageal disorders	1.04 (0.90-1.20)	H iel
Anxiety and fear-related disorders	1.00 (0.83-1.20)	H∳H
Headache including migraine	0.96 (0.66-1.41)	⊢
Depressive disorders	0.96 (0.78-1.18)	₩
Other congenital anomalies	0.93 (0.72-1.20)	⊢ é ⊢
Neurodevelopmental disorders	0.83 (0.70-0.98)	+•-(
Trauma and stressor-related disorders	0.80 (0.62-1.04)	⊢• ∔
Other upper respiratory disease	0.80 (0.56-1.12)	⊢• +I
	0	3 1
	0	Risk ratio (95% CI)

Kompaniyets L et al: JAMA Netw Open 2021;4(6):e2111182. doi:10.1001/jamanetworkopen.2021.11182


Summary

- 1. The risk of mortality from COVID-19 in people with type 1 and type 2 diabetes is increased in those who are older, with poor glycemic control or CKD.
- 2. Other comorbid conditions occurring with diabetes also increase the risk of mortality.
- 3. Type 1 diabetes, type 2 diabetes and obesity are risk factors for hospitalization of youth with COVID-19.

Outline

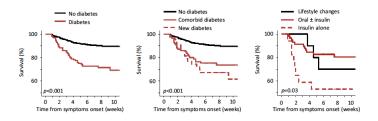
- Considerations in the need to find answers to a new disease entity
- 2. Epidemiology of the disease
- 3. Hyperglycemia in COVID-19 a "new" vs. "old" disease entity?
- 4. Response to medications in patients with diabetes real or unreal?
- 5. Post-Acute Sequalae of COVID-19 (Long COVID)

Features of New Onset Diabetes with SARS-CoV-2 Infection and Before COVID-19

Ghosh A et al: Diabetes Metab Syndr 15:215-220; 2021

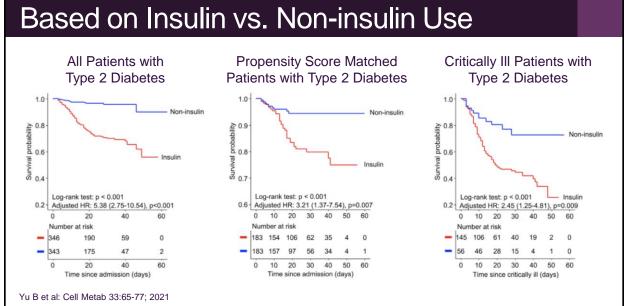
Hyperglycemic Presentation of People with Severe or Moderate COVID-19

- 1. Diabetic ketoacidosis
- 2. New onset hyperglycemia at admission
- 3. New onset hyperglycemia during hospitalization
- 4. Aggravation of known type 1 and 2 diabetes


Features in Patients With DKA With and Without COVID-19 (Glytec Database)

In patients with COVID-19:

- Older, more men and greater percent with diabetes complications, including CVD and heart failure
- Obese vs. overweight, with similar proportion with diabetes (>90%)
- HbA1c (>11.2%) not different, blood glucose lower (523 vs. 588 mg/dL)
- Required more insulin (5.0 vs. 3.6 U/h) and DKA treated for longer (34 vs. 23 hours)
- Three-fold greater AKI (30% vs. 10%) and six-fold greater in-hospital mortality (30% vs. 5%)


Pasquel FJ et al: JAMA Netw Open 4(3):e211091; 2021

Survival After COVID-19 Pneumonia by Diabetes Status and Glycemia

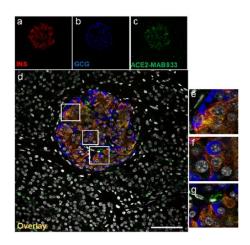
Lampasona V et al: Diabetologia 63:2548-2558; 2020

Clinical Outcomes of COVID-19 Patients Based on Insulin vs. Non-insulin Use

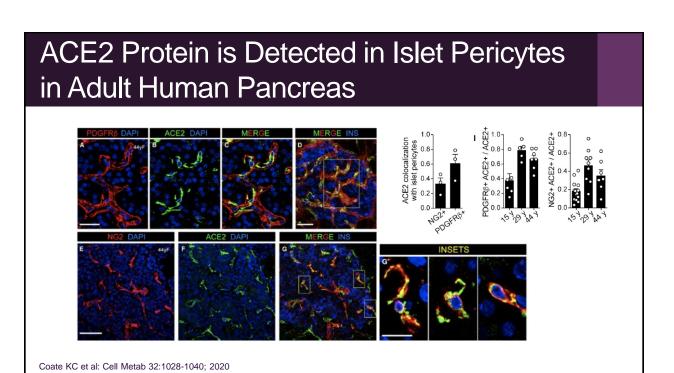
Survival of COVID-19 Patients Based on Insulin vs. Oral Agent Use

Insulin vs.	# PSM Pts.	Mortality Insulin	Mortality Oral Agent	Adjusted HR (CI)	p value
Metformin	92	22.8%	2.2%	22.67 (2.92-175.72)	<0.001
α-glucosidase inhibitor	81	23.5%	2.5%	38.12 (3.61-402.48)	<0.001
Sulfonylureas	52	13.5%	0%		
DPP-4 Inhibitors	16	6.2%	0%		

PSM = propensity score matching

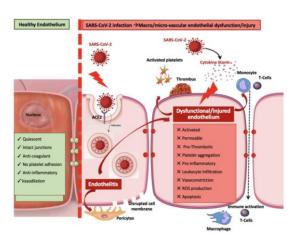

Yu B et al: Cell Metab 33:65-77; 2021

Medications for COVID-19 Treatment and Effects on Glycemia

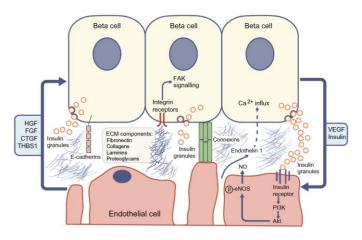

- Glucocorticoids worsen glycemia by inducing insulin resistance, decreasing insulin and increasing glucagon secretion
- Tocilizumab improves glycemia by blocking IL-6
- 3. Remdesivir no clear data

Pathophysiology of the Islet With SARS-CoV-2 and in COVID-19

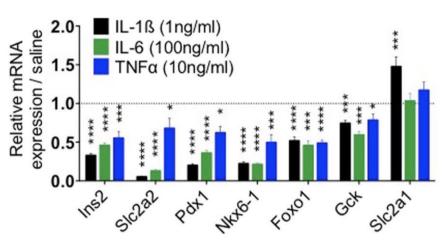
ACE2 is Detected in Islet β Cells and Endothelial Cells in Adult Human Pancreas


Fignani D et al: Front Endocrinol - https://doi.org/10.3389/fendo.2020.596898

Summary of Key Findings of ACE2 Expression in the Pancreas


Observations	Methodologies/Cells Analyzed	Comments	References		
	Immunostaining with anti-ACE2 antibody on a pancreatic tissue section	Tissue from a single donor; antibody clone was not identified	Yang JK et al: Acta Diabetol 47:193-199; 2010		
1. Mos	Immundituriance of Stee Crinary Statismod	Material Composition pattern	molecular Yang L et al: Cell Stem Cell 27:125-136; 2020		
" _Y mac	Inhigh addining of Ontrol Procedute issuSSIV sections	cose set plote ential expression of short/ridnivirus binding ACE2 isoform	egsan Detail Front Endocrinol - https://doi.org/10.3389/fendo.2020.596898		
2 ACE2 Expression	pancreatic tissue sections from control subjects	may possess the	SARS-CoV-2- Muller JA et al: Nat Metab 3:149-165: 2021		
asso	and immunostaining of pancreatic tissue sections AC	TE-2, TMPRSS2, N	NRP1 and TFRC.		
3. Whi	Immunofluorescence of pancreatic tissue sections from control subsequential automatic description of the control of the contro	essinistiins joosisilde to	infectal Base els 576; 2021		
auto	<u> </u>	THINDS SARS - CON-2	infection of 8 cells Hikmet F et al: Mol Syst Biol 16:e9610; 2020		
or Limbelin ACE2	conclusive; proxima	Inflammation is p RNA expression supports protein expression pattern	OSSIDIE. Coate KC et al: Cell Metab 32:1028-1040; 2020		
Expression	Control and COVD-19 pancreatic tissue sections	mRNA expression supports protein expression pattern	Kusmartseva I et al: Cell Metab 32:1041-1051; 2020		

Dysregulation of Endothelial Cell Function by SARS-CoV-2


Evans PC et al: Cardiovasc Res 116:2177-2184; 2020

Main Factors Regulating the Islet-Endothelial Cell Axis

Hogan MF and Hull RL: Diabetologia 60:952-959; 2017

Dedifferentiaton of Mouse β Cells Induced by IL-1 β , IL-6 and TNF α

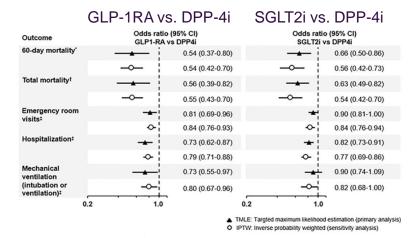
Nordmann TM et al: Sci Rep 7:6285; 2017. doi: 10.1038/s41598-017-06731-w

Summary

- 1. The presentation of diabetes during the pandemic may differ somewhat from what we are used to.
- 2. People on insulin have poorer outcomes, perhaps in keeping with them having more severe diabetes.
- SARS-CoV-2 may gain entry into the β cell, but not many cells can be shown to contain viral protein.
 Other islet cell types such as endothelial cells and pericytes may be affected.

Outline

- Considerations in the need to find answers to a new disease entity
- 2. Epidemiology of the disease
- 3. Hyperglycemia in COVID-19 a "new" vs. "old" disease entity?
- 4. Response to medications in patients with diabetes real or unreal?
- 5. Post-Acute Sequalae of COVID-19 (Long COVID)

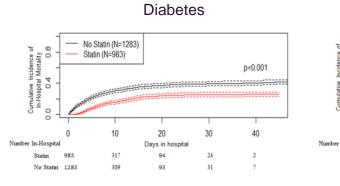

Effect of Metformin on Mortality and Secondary Outcomes in COVID-19

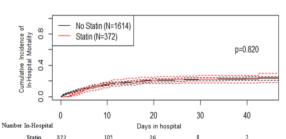
	Time-varying Cox I Exposure Before		Hazard in All Groups After PSM		
Metformin vs. Non-metformin	Adjusted HR (95% CI)	p Value	Adjusted HR (95% CI)	p Value	
Mortality	0.87 (0.36, 2.12)	0.757	1.65 (0.71, 3.86)	0.247	
ARDS	0.66 (0.46, 0.96)	0.028	0.85 (0.61, 1.17)	0.317	
DIC	0.44 (0.05, 4.00)	0.467	1.68 (0.26, 10.9)	0.586	
Heart failure	0.61 (0.43, 0.87)	0.006	0.59 (0.41, 0.83)	0.003	
Acute kidney injury	0.71 (0.18, 2.79)	0.627	0.65 (0.19, 2.24)	0.491	
Acute heart injury	1.14 (0.73, 1.79)	0.559	1.02 (0.62, 1.66)	0.947	

PSM: propensity score-matching

Cheng X et al: Nat Med 32:537-547; 2020

GLP-1RA and SGLT2i Reduce COVID-19 Adverse Outcomes Compared to DPP-4i




January 2018-February 2021

- 12,446 individuals
- Mortality within 60 days of positive SARS-Cov-2 test
- ER visit, hospitalization and mechanical ventilation within 14 days of positive SARS-Cov-2 test
- Total mortality during observation period

Kahkoska AR et al: Diabetes Care 2021 Jun 16;dc210065. doi: 10.2337/dc21-0065

Differential Survival from COVID-19 in Hospitalized Statin Users with Diabetes

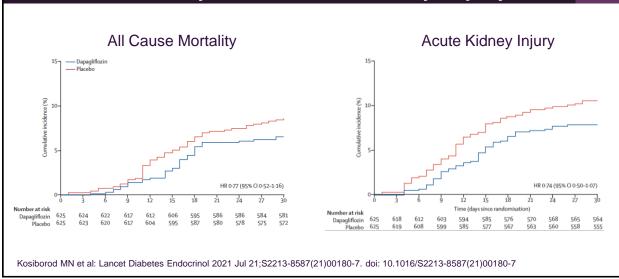
110

384

No Statin 1614

No Diabetes

Saeed O et al: JAHA - https://www.ahajournals.org/doi/pdf/10.1161/JAHA.120.018475


Glucose-Lowering Agents in Clinical Trials in Patients with COVID-19

- Dapagliflozin in Respiratory Failure in Patients with COVID-19 (DARE-19)
- Semaglutide to Reduce Myocardial Injury in Patients with COVID-19 (SEMPATICO)

https://clinicaltrials.gov/ct2/show/NCT04350593?term=dapagliflozin&cond=covid&draw=2&rank=1 https://clinicaltrials.gov/ct2/show/NCT04615871

DARE-19 Primary Outcome: Prevention of Organ Dysfunction and Death Dapagliflozin Placebo HR (95% CI) n/N n/N 70/625 86/625 0.80 (0.58-1.10) New or worsening organ dysfunction 64/625 0.80 (0.57-1.11) 70/625 0.85 (0.60-1.20) Respiratory decompensation 58/625 Cardiac decompensation 47/625 58/625 0.81 (0.55-1.19) Kidney decompensation 24/625 35/625 0.65 (0.38-1.10) Death from any cause 41/625 0.77 (0.52-1.16) HR 0-80 (95% CI 0-58-1-10) p=0-17 Time (days since r Kosiborod MN et al: Lancet Diabetes Endocrinol 2021 Jul 21;S2213-8587(21)00180-7. doi: 10.1016/S2213-8587(21)00180-7

DARE-19 Key Secondary Outcomes: All Cause Mortality and Acute Kidney Injury

Summary

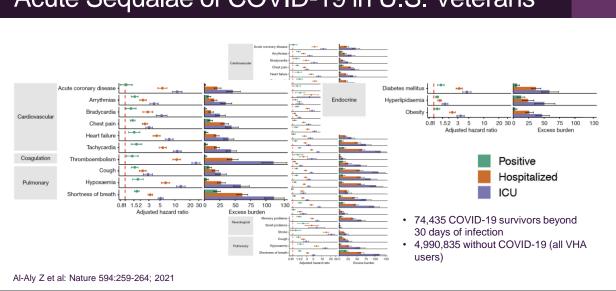
- 1. Randomized clinical trials comparing glucoselowering agents have not been reported.
- 2. Data suggest that the glucose-lowering medications metformin, GLP-1 receptor agonists and SGLT2 inhibitors may be beneficial.
- 3. The SGLT2 inhibitor dapagliflozin does not reduce mortality in people with severe COVID-19 and diabetes.

Outline

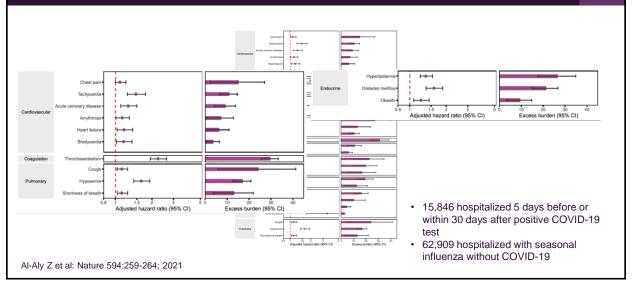
- Considerations in the need to find answers to a new disease entity
- 2. Epidemiology of the disease
- 3. Hyperglycemia in COVID-19 a "new" vs. "old" disease entity?
- 4. Response to medications in patients with diabetes– real or unreal?
- 5. Post-Acute Sequalae of COVID-19 (Long COVID)

Parallel in Pathology of Long COVID-19 and **Chronic Diabetes** Long **Diabetes** COVID-19 Microvascular Microvascular endothelitis endothelitis Inflammation Inflammation Autoimmunity Autoimmunity Metabolism Metabolism Adapted from Feldman EL: Diabetes 69:2549-2565: 2020

Diabetes as a Consequence of COVID-19 in Hospitalized Chinese Patients

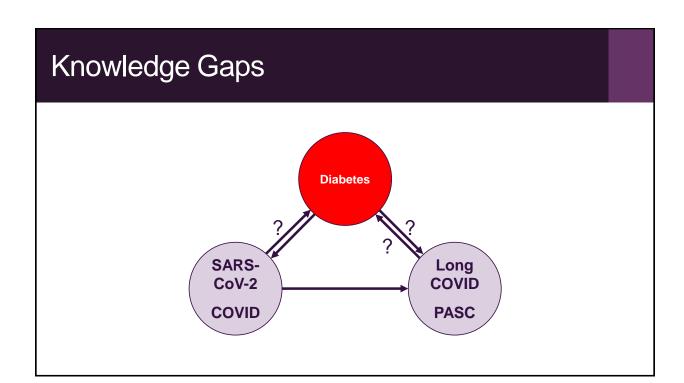

"58 patients without self reported history of diabetes were newly diagnosed with the condition at follow-up."

Total subjects followed: 2,469-736 = 1,733


Rate: 58/1,733 = 3.35%

Huang C et al: Lancet 397:220-232; 2021

Incident Diagnoses and Excess Burden of Post-Acute Sequalae of COVID-19 in U.S. Veterans



Incident Diagnoses and Excess Burden of Post-Acute Sequalae of COVID-19 in U.S. Veterans

Summary

- 1. Post acute sequelae of COVID-19 (PASC) is a consequence of SARS-CoV-2 infection that affects many organ systems.
- 2. Retrospective studies suggest new onset diabetes may be a feature of COVID-19 at the time of acute illness or as part of PASC.
- 3. Whether COVID-19 impacts diabetes complications in those with pre-existing diabetes is unknown.

Acknowledgements

Numerous fellows, faculty and colleagues who have helped formulate my thoughts over the years.

Department of Veterans Affairs NIH/NIDDK American Diabetes Association

Diabetes Care Summit

Breakout Session I: Diabetes-Related Complications and Comorbidities in Youth

Diabetes Care Summit

Disclosure

• I have no personal or financial disclosures

Objectives

- To review Diabetes-related micro- and macrovascular complications in type 2 diabetes
- To discuss the prevalence of diabetes complications in youth onset type
 2 diabetes
- To examine the most recent evidence regarding the prevalence of microvascular complications in youth

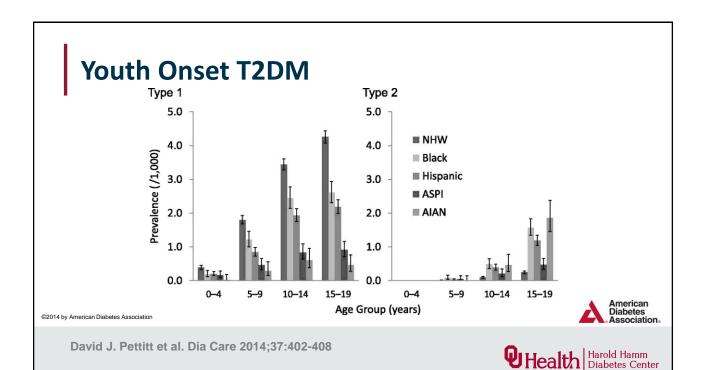
Complications and Comorbidities of Type 2 Diabetes

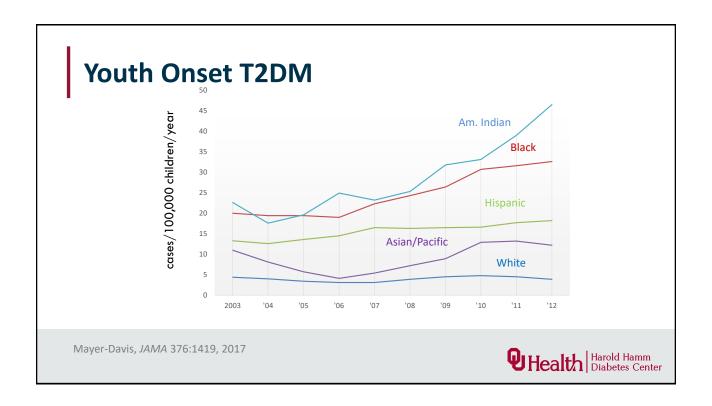
- Macrovascular Complications
 - · Coronary Artery disease
 - · Peripheral Artery Disease
 - Cerebrovascular Disease
 - Cardiomyopathy
- Microvascular Complications
 - Nephropathy
 - Retinopathy
 - Neuropathy

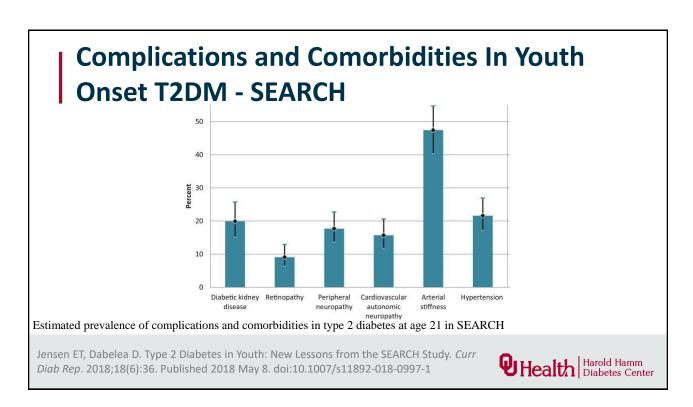
Macrovascular Disease

- · Leading cause of morbidity and mortality in diabetes
- Cardiovascular disease is the leading cause of death in patients with diabetes
- 2/3 of deaths in people with T2DM is related to cardiovascular disease
- · Risk factors
 - Hypertension
 - · Dyslipidemia
 - · Arterial stiffness

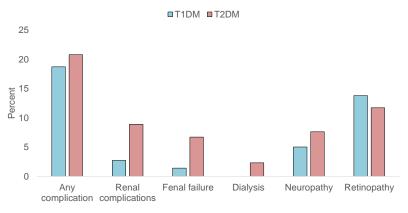
ADA Standards of Care - 2021

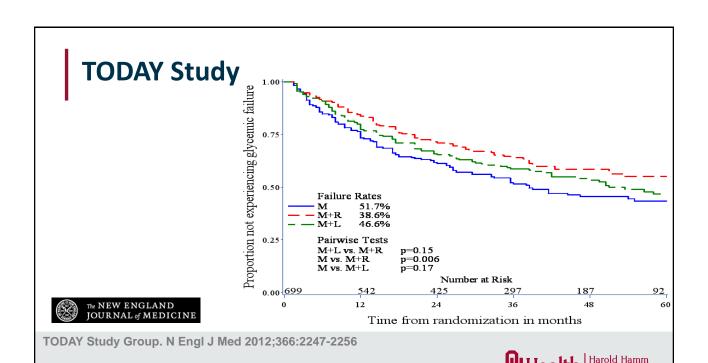


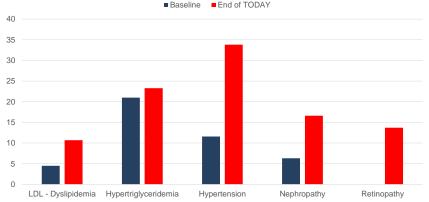

Microvascular Disease


- Nephropathy
 - · Occurs in 20-40% of patients with Diabetes
 - May be present in persons with T2DM at diagnosis
 - Is the leading cause of End Stage Renal Disease (ESRD) in US
 - Increases cardiovascular risk
- Retinopathy
 - The leading cause of blindness in 20-74 year old
 - Strongly associated with diabetes duration and glycemic control
- Neuropathy
 - Heterogenous group including peripheral, autonomic, and GI neuropathies
 - Glycemic control is key to stopping progression

ADA Standards of Care - 2021

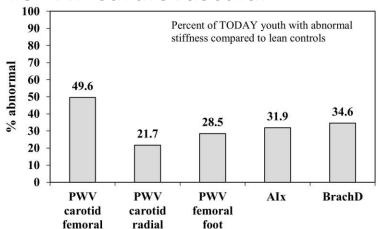



Complications and Comorbidities In Youth Onset T2DM - Canada


Estimated prevalence of complications and comorbidities in type 2 diabetes at age 18 in Canada

Dart AB, Martens PJ, Rigatto C, Brownell MD, Dean HJ, Sellers EA. Earlier onset of complications in youth with type 2 diabetes. Diabetes Care. 2014 Feb;37(2):436-43. doi: 10.2337/dc13-0954. Epub 2013 Oct 15. PMID: 24130346.

Complications and Comorbidities In Youth Onset T2DM - TODAY



Percentage of TODAY study participants experiencing complications and comorbidities at baseline and end of study.

Tryggestad JB, Willi SM. Complications and comorbidities of T2DM in adolescents: findings from the TODAY clinical trial. *J Diabetes Complications*. 2015;29(2):307-312. doi:10.1016/j.jdiacomp.2014.10.009

Complications and Comorbidities In Youth Onset T2DM – TODAY Cardiovascular

Shah AS, El Ghormli L, Gidding SS, Bacha F, Nadeau KJ, Levitt Katz LE, Tryggestad JB, Leibel N, Hale DE, Urbina EM. Prevalence of arterial stiffness in adolescents with type 2 diabetes in the TODAY cohort: Relationships to glycemic control and other risk factors. J Diabetes Complications. 2018 Aug;32(8):740-745. doi: 10.1016/j.jdiacomp.2018.05.013. Epub 2018 May 25. PMID: 29936086; PMCID: PMC6444355.

Complications and Comorbidities In Youth Onset T2DM – TODAY Cardiovascular

		Obese control	P value			
Variable	TODAY, <i>n</i> = 397	subjects, <i>n</i> = 133	Unadjusted	Adjusted		
SDNN (ms)*	58.1 ± 29.6	67.1 ± 25.4	<0.0001	<0.0001		
RMSSD (ms)*	53.2 ± 36.7	67.9 ± 35.2	<0.0001	<0.0001		
PNN50 (%)*	26.3 ± 23.7	39.7 ± 23.0	<0.0001	<0.0001		
LF Power (n.u.)†	47.3 ± 20.0	39.5 ± 19.7	0.0001	<0.0001		
HF Power (n.u.)*	52.7 ± 20.0	60.5 ± 19.7	0.0001	<0.0001		
LF:HF ratio† HRV indices in TODAY participant	1.4 ± 1.7 ts versus obese control subjects	1.0 ± 1.1	<0.0001	<0.0001		

*Unadjusted means ± SD are shown in the table. Total power for TODAY participants was 2,576 ± 2,919. P value from general linear model comparing mean of the obese control subjects to the TODAY participants. SDNN, RMSSD, and LF:HF ratio were log transformed prior to testing because of skewed distribution. A nonparametric rank-based test was used to compare the PNN50 values. Unadjusted and adjusted P values for age, sex, race-ethnicity, smoking, and BMI are given for the cardiac autonomic function measures. n.u., normalized units.

Shah AS, El Ghormli L, Vajravelu ME, et al. Heart Rate Variability and Cardiac Autonomic Dysfunction: Prevalence, Risk Factors, and Relationship to Arterial Stiffness in the Treatment Options for Type 2



Diabetes in Adolescents and Youth (TODAY) Study. Diabetes Care. 2019;42(11):2143-2150.

Complications and Comorbidities In Youth Onset T2DM – TODAY Cardiovascular

Normal Weight Controls (N=51) Obese Controls (N=194)

Obese Controls (N=194) Fisher's Exact p=0.1562

Participants with T2D (N=411)

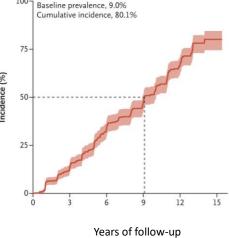
94.3

■ Normal LVM, Normal wall ■ Normal LVM, High wall

H

■ High LVM, Normal wall
■ High LVM, High wall

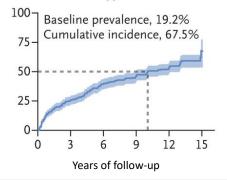
© 2020 American Heart Association, Inc.


TODAY Study Group. Longitudinal Changes in Cardiac Structure and Function From Adolescence to Young Adulthood in Participants With Type 2 Diabetes Mellitus: The TODAY Follow-Up Study. Circ Heart Fail. 2020 Jun;13(6):e006685. doi: 10.1161/CIRCHEARTFAILURE.119.006685. Epub 2020 Jun 5. PMID:

^{•*} Lower = worse. •† Higher = worse.

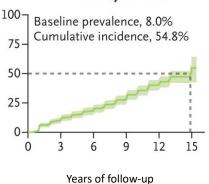
Complications and Comorbidities In Youth Onset T2DM – TODAY2 Baseline prevalence, 9.0% Cumulative incidence, 80.1%

Baseline Prevalence and Cumulative Incidence of any Microvascular Disease

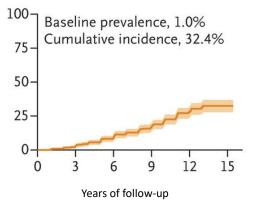

TODAY Study Group, Bjornstad P, Drews KL, Caprio S, Gubitosi-Klug R, Nathan DM, Tesfaldet B, Tryggestad J, White NH, Zeitler P. Long-Term Complications in Youth-Onset Type 2 Diabetes. N Engl J Med. 2021 Jul 29;385(5):416-426. doi: 10.1056/NEJMoa2100165. PMID: 34320286.

Complications and Comorbidities In Youth Onset T2DM – TODAY2

Incidence of Complications

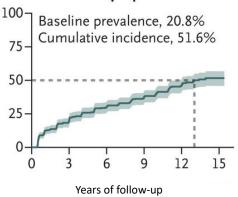

Hypertension

Complications and Comorbidities In Youth Onset T2DM – TODAY2

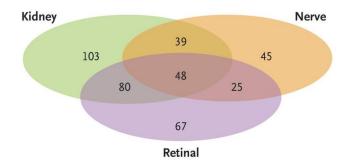


TODAY Study Group, Bjornstad P, Drews KL, Caprio S, Gubitosi-Klug R, Nathan DM, Tesfaldet B, Tryggestad J, White NH, Zeitler P. Long-Term Complications in Youth-Onset Type 2 Diabetes. N Engl J Med. 2021 Jul 29;385(5):416-426. doi: 10.1056/NEJMoa2100165. PMID: 34320286.

Complications and Comorbidities In Youth Onset T2DM – TODAY2

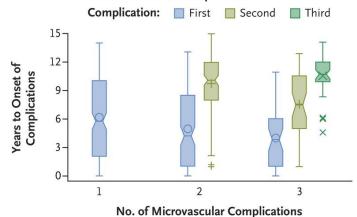

Nerve Disease

Complications and Comorbidities In Youth Onset T2DM – TODAY2



TODAY Study Group, Bjornstad P, Drews KL, Caprio S, Gubitosi-Klug R, Nathan DM, Tesfaldet B, Tryggestad J, White NH, Zeitler P. Long-Term Complications in Youth-Onset Type 2 Diabetes. N Engl J Med. 2021 Jul 29;385(5):416-426. doi: 10.1056/NEJMoa2100165. PMID: 34320286.

Complications and Comorbidities In Youth Onset T2DM – TODAY2


C Number of Patients with Each Microvascular Complication

Complications and Comorbidities In Youth Onset T2DM – TODAY2

Time to Onset of Microvascular Complications

athan DM Tesfaldet B Tryggestad

TODAY Study Group, Bjornstad P, Drews KL, Caprio S, Gubitosi-Klug R, Nathan DM, Tesfaldet B, Tryggestad J, White NH, Zeitler P. Long-Term Complications in Youth-Onset Type 2 Diabetes. N Engl J Med. 2021 Jul 29;385(5):416-426. doi: 10.1056/NEJMoa2100165. PMID: 34320286.

Complications and Comorbidities In Youth

Onset T2DM - TODAY2

Risk Factors	Number of Complications				Odds Ratio (95% CI	
	0	1	2	3		
Female vs. male — %	34.8	31.2	34.7	54.2	0.84 (0.63-1.13)	
Race and ethnic group, vs. Non-Hispanic White — %†						
Non-Hispanic Black	27.4	39.1	32.6	39.6	1.80 (1.20-2.68)	
Hispanic	38.9	38.6	43.8	39.6	1.57 (1.06-2.33)	
Other	9.3	5.1	8.3	6.3	NA.	
Non-Hispanic White	24.4	17.2	15.3	14.6	_	
Treatment, vs. metformin — %\$						
Metformin plus rosiglitazone	35.9	32.6	31.3	31.3	0.97 (0.69-1.36)	
Metformin plus lifestyle intervention	33.0	37.2	29.9	25.0	1.31 (0.93-1.84)	
Metformin	31.1	30.2	38.9	43.8		
Age at baseline, per each increase of 1 yr of age	14.0±2.0	14.0±2.0	13.8±2.1	14.7±1.9	1.02 (0.95-1.09)	
Duration of type 2 diabetes at baseline, per each increase of 1 mo of duration	7.4±5.6	7.8±5.8	8.4±6.4	7.8±5.4	1.02 (0.99-1.04)	
Unadjusted models						
Glycated hemoglobin level, per each increase of 1% or 11 mmol/mol	7.0±1.7	8.2±1.9	9.6±1.7	10.4±1.3	1.78 (1.64-1.93)	
Mean BMI, per each increase of 5	35.5±6.9	36.9±8.3	35.6±7.4	39.448.9	1.09 (1.00-1.20)	
Mean log insulin sensitivity, per each increase of 1 5D§	0.054±0.030	0.046±0.026	0.043±0.026	0.038±0.017	0.65 (0.56-0.74)	
Hypertension — %	40.7	61.9	72.2	83.3	3.09 (2.31-4.15)	
Dyslipidemia — %	40.4	54.0	70.8	66.7	2.43 (1.83-3.22)	
Adjusted models¶						
Glycated hemoglobin level, per each increase of 1% or 11 mmol/mol					1.80 (1.65-1.95)	
BMI, per each increase of 5					1.09 (0.99-1.19)	
Natural log insulin sensitivity, per each increase of 1 SD§					0.64 (0.56-0.74)	
Hypertension					3.18 (2.35-4.30)	
Dyslipidemia					2.77 (2.05-3.72)	

* Plus-minux values are means s.50. NA denotes not applicable. The odds ratio for the "other" category was not calculated because of heterogeneity within the group. The odds ratio for non-Hispanic Blac versus Hispanic was -0.31 (95% CL -0.45 to 0.19). The odd spin for mentions plus in lifetable interaction versus methods in the social strange was 0.24 (95% CL 0.51 to 1.04).

Insulin sensitivity was defined as 1-fasting insulin.
The models were adjusted for the following preselected covariates: sex, race and ethnic group, baseline age, and baseline duration of typ

Conclusions

- T2DM is increasing rapidly in youth.
- Among youth who have onset of type 2 diabetes in youth, the risk of complications, including microvascular complications, increased steadily over time and affected most participants by the time of young adulthood.
- Complications are more common among participants of minority race and ethnic group and among those with hyperglycemia, hypertension, and dyslipidemia.
- · Youth onset T2DM must be treated aggressively.

Recommendations

- Glycemic Control
 - · Start metformin at onset
 - If A1c is above 8.5% insulin therapy with a long acting analogue is needed
 - Consider GLP-1 analogues to optimize glucose control
- Screening/Treatment
 - Screen for dyslipidemia, hypertension, nephropathy and retinopathy at diagnosis and annually thereafter
 - Start antihypertensive if BP>95% for height or over 135mmHg systolic
 - Start ACEI for urine albumin/Cr ratio >30mg/g

Contact Information

Mailing Address

1200 Children's Ave, Suite 4D Oklahoma City, OK 73104

Email Address

Jeanie-

Tryggestad@ouhsc.edu

Phone Number

(405) 271-6764

SEPTEMBER 10TH, 2021

Diabetic kidney disease in young persons with diabetes: a metabolic disorder

PETTER BJORNSTAD, M.D.

ASSISTANT PROFESSOR OF PEDIATRICS AND MEDICINE
BOETTCHER INVESTIGATOR

Presenter Disclosure

AstraZeneca: Consultancy, Advisory Board, Grant support
 Bayer: Consultancy, Advisory Board, Data Monitoring

Committee Member

Boehringer Ingelheim: Consultancy, Advisory Board

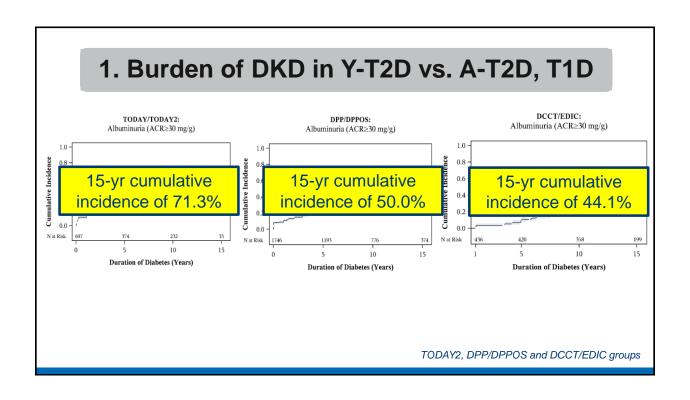
Bristol-Meyer Squibb: ConsultancyEli Lilly: Consultancy

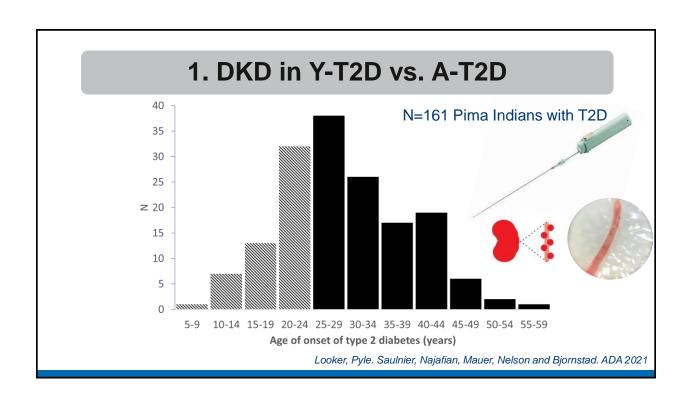
Horizon Pharma: Advisory Board and Grant Support

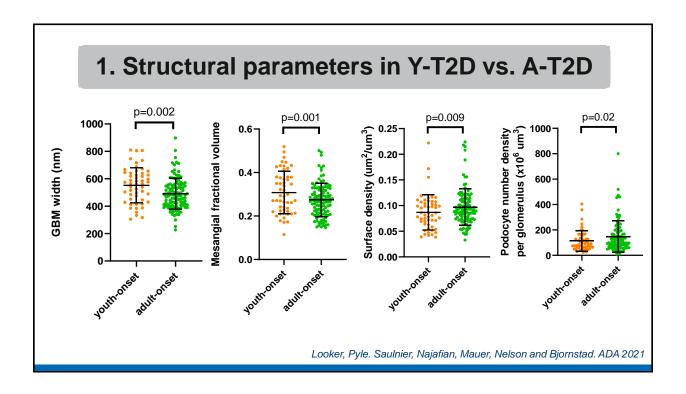
- Merck: Grant Support

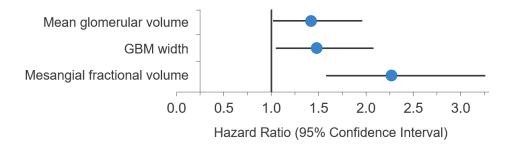
- Novo Nordisk: Advisory Board, Consultancy and Grant Support


Sanofi: ConsultancyXORTX Scientific: Advisory Board

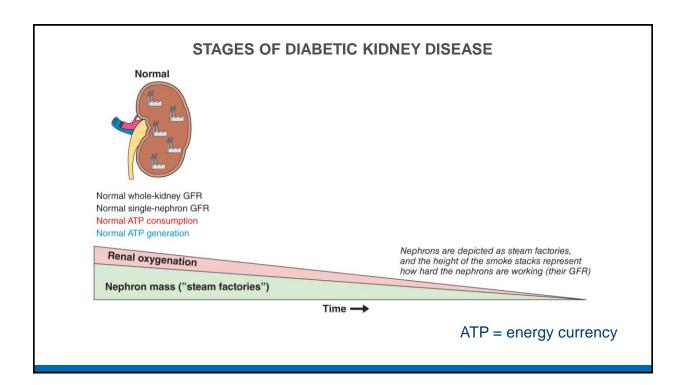

Overview

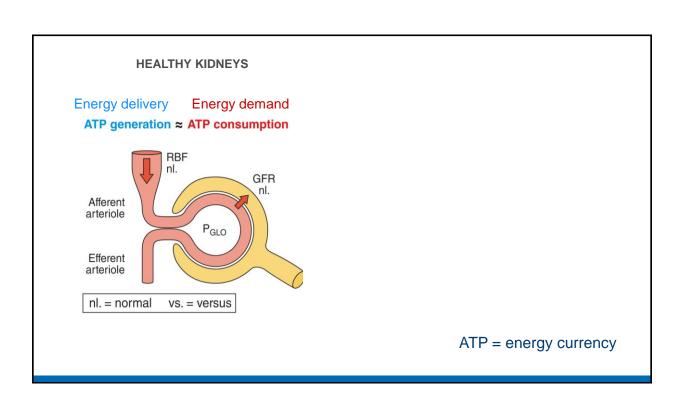

- 1. The high burden of DKD in youth-onset T2D
- 2. Risk factors and mechanisms of DKD in youth-onset T2D
- 3. Current and novel therapies to mitigate DKD in youth-onset T2D
- 4. Future directions and need for an integrated biological approach
- 5. Summary

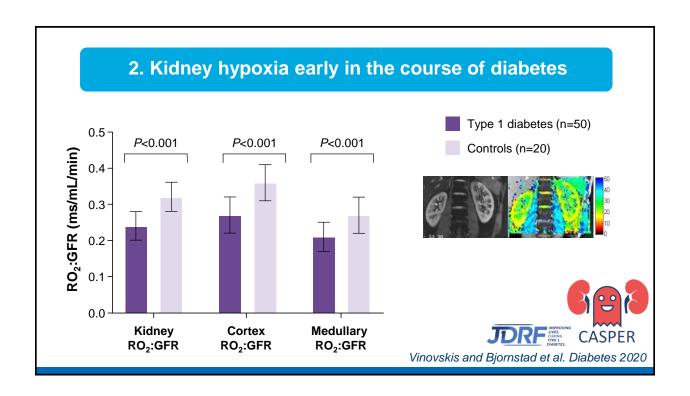




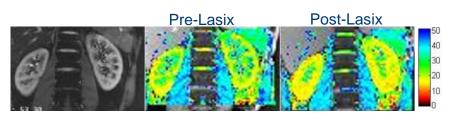
Hazard Ratio and 95% CI for ≥40% Loss of GFR per 1 SD Increment of Each Morphometric Variable

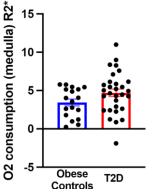



Fufaa GD, Clin J Am Soc Nephrol, 2016

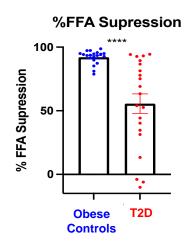

2. Risk factors of DKD in Y-T2D

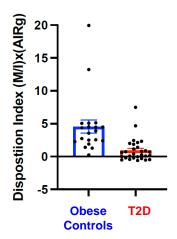
	UACR ≥30 mg/g			UACR ≥300 mg/g		
Characteristics (reference group or unit change)*	Hazard Ratio	95% CI	P-value	Hazard Ratio	95% CI	P-value
Loss of glycemic control during TODAY (yes vs. no)	2.30	1.75, 3.03	<.0001	4.75	2.59, 8.71	<.0001
Hypertension (yes vs. no)	1.82	1.39, 2.40	<.0001	4.36	2.29, 8.28	<.0001
Hyperfiltration (yes vs. no)	1.63	1.21, 2.18	0.001	1.84	1.08, 3.12	0.02
Log insulin sensitivity (per SD)	0.73	0.64, 0.82	<.0001	0.75	0.60, 0.92	0.007
Log C-peptide ODI (per SD)	0.66	0.60, 0.74	<.0001	0.65	0.53, 0.80	<.0001

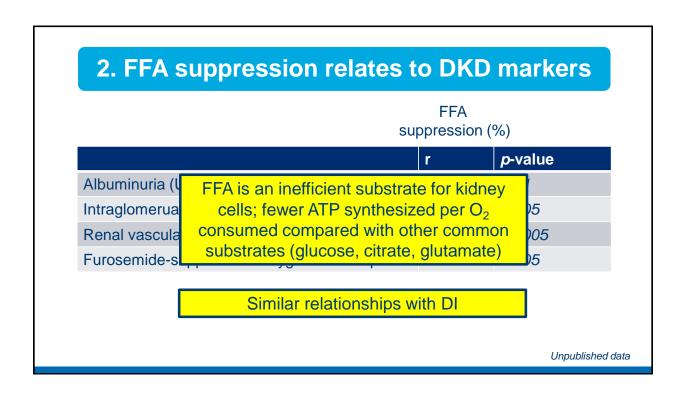

TODAY group. Diabetes Care 2021

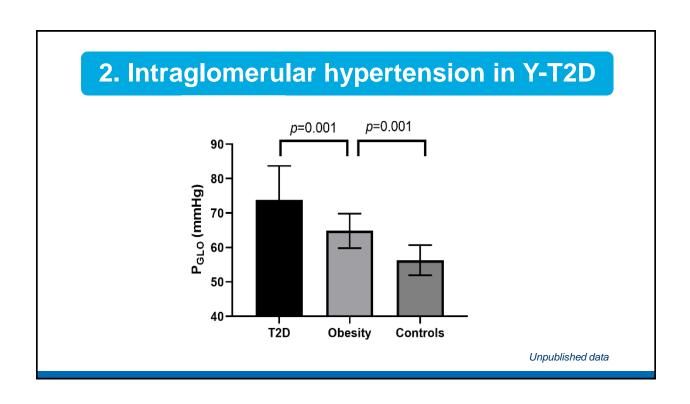


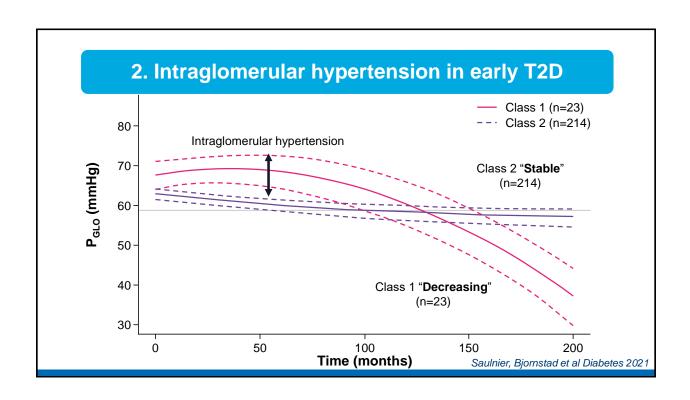
2. Renal oxygen consumption in Y-T2D

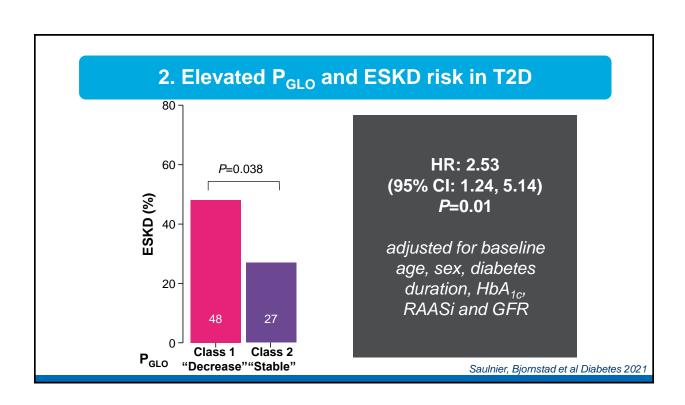


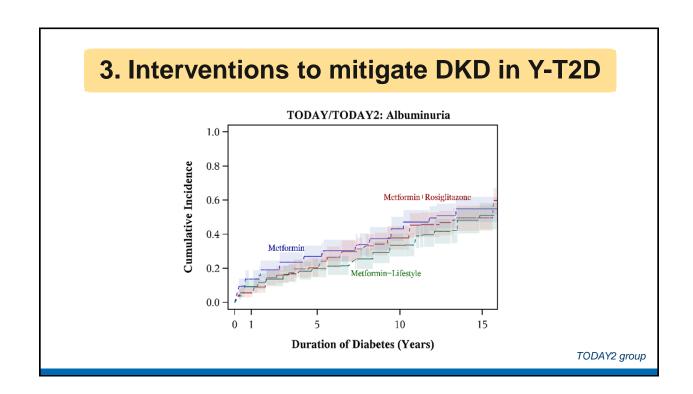

Preliminary morphometric analyses of the kidney biopsies in Y-T2D (17±2 years of age) indicate inverse relationships among GBM width (**r:-0.63**, **p=0.02**), mesangial expansion (**r:-0.64**, **p=0.02**) and kidney oxygenation normalized by GFR.

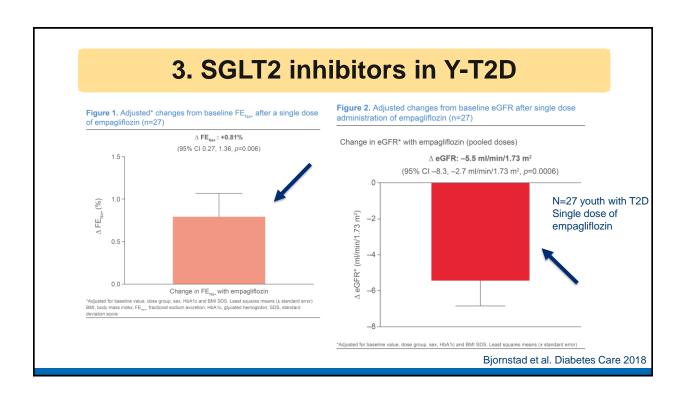

Unpublished data

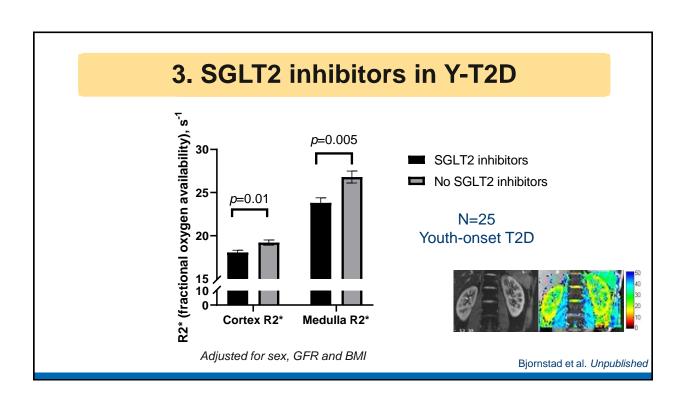

2. FFA suppression and DI in Y-T2D

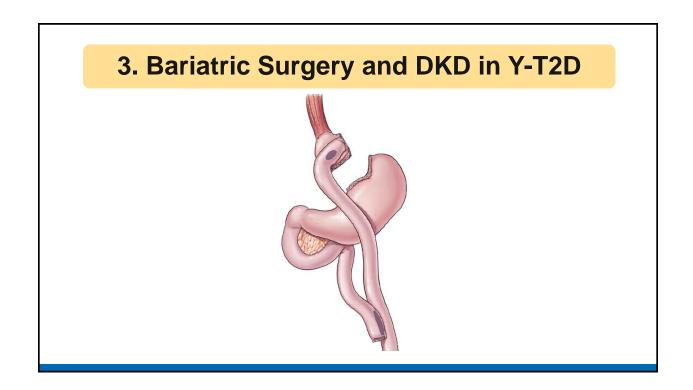


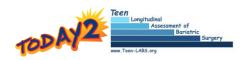


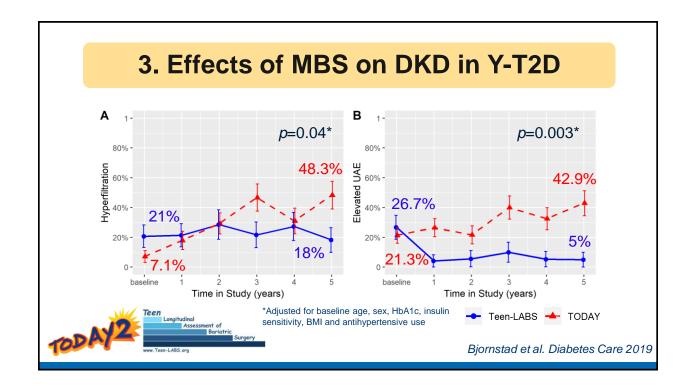

Unpublished data

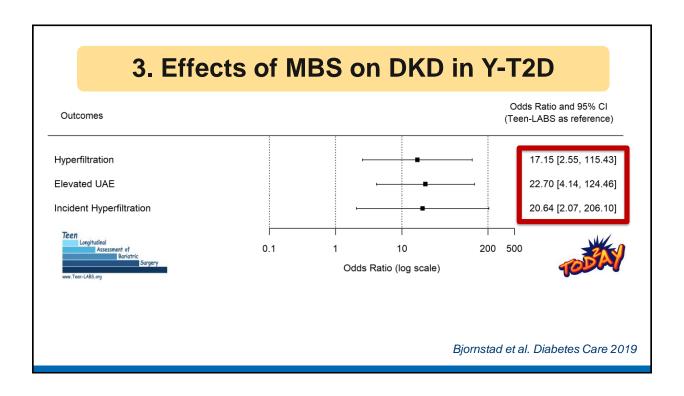


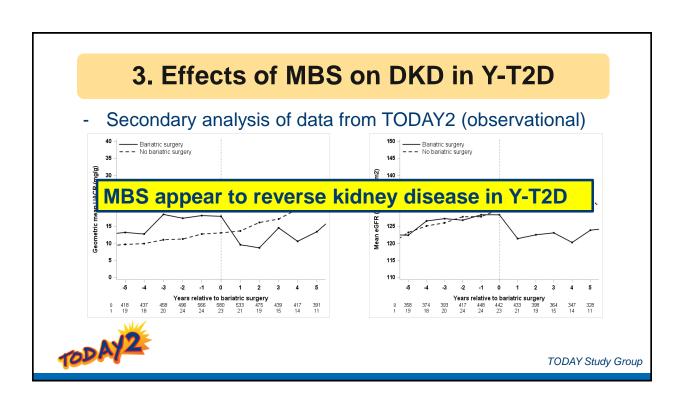


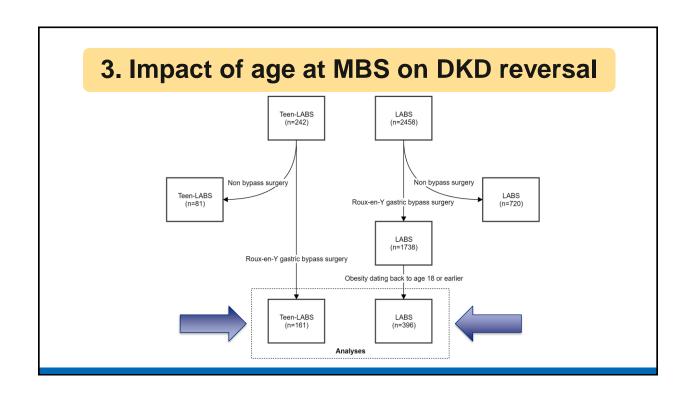


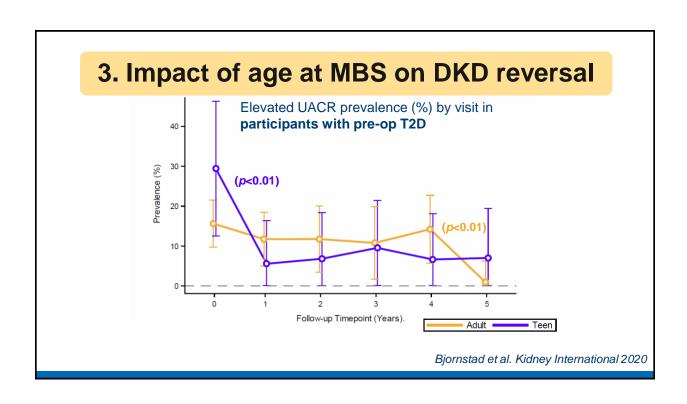


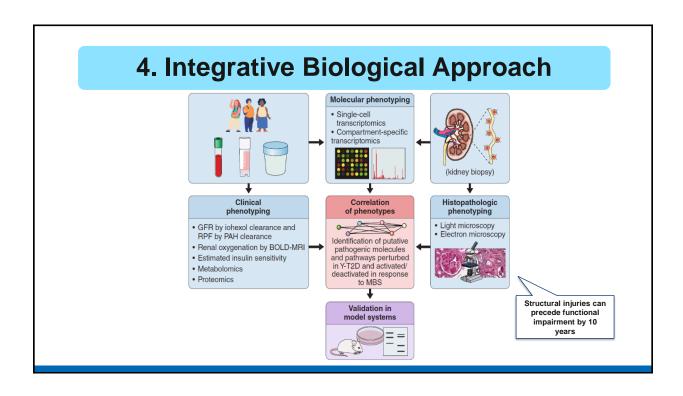





3. Effects of MBS on DKD in Y-T2D


- MBS = metabolic bariatric surgery
- Secondary analysis of data from **TODAY** and **Teen-LABS**.
- **TODAY** participants were randomized to metformin alone or in combination with rosiglitazone or intensive lifestyle intervention, with insulin therapy given for glycemic progression.
- Teen-LABS participants underwent MBS.
- **TODAY** participants (n=63) frequency matched to 30 **Teen-LABS** participants with T2D using: baseline age (13-18 years); race/ethnicity, sex and baseline BMI (>35kg/m²)





5. Summary

- Burden of DKD is high in Y-T2D.
- Insulin resistance and relative kidney hypoxia are important risk factors of DKD in Y-T2D.
- SGLT2i and MBS may reverse early evidence of DKD in Y-T2D.
- Younger age at MBS predicts earlier attenuation of DKD.
- Metabolic and molecular mechanisms of nephroprotection mediated by MBS remain poorly understood.
- To uncover novel targetable molecular pathways for the development of non-surgical therapeutic targets, we need to apply an integrative biological approach.

Collaborators

University of Colorado: NIDDK:

- Kristen J Nadeau
- Phil Zeitler
- Tom Inge
- Laura Pyle
- Michal Schafer
- Michel Chonchol
- Jane Reusch
- Carlos Roncal
- Richard J Johnson
- Paul Wadwa
- Arleta Rewers
- Marian J Rewers
- Lorna Browne
- Alex Barker
- CCHMC:

Children's Hospital Colorado

Here, it's different.

- **Eddie Nehus**
- Mark Mitsnefes

Stanford University: · David M. Maahs

Judy Regensteiner University of Chicago:

· Pottumarthi Prasad

CDC:

Meda Pavkov

Johns Hopkins:

· Chirag Parikh

University of Washington:

· Ian de Boer

Janet Snell-Bergeon University of Michigan:

- · Matthias Kretzler
- · Jeff Hodgin

UCSD:

Joachim Ix

Affiliated with

Department of Pediatrics SCHOOL OF MEDICINE

UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

University of Toronto:

- David Z. Cherney
 - Farid Mahmud **Daniel Scarr**
- Bruce A. Perkins Julie Lovshin
- Erik Lovblom **Etienne Sochett**

Yuliya Lytvyn

VU University Medical Center:

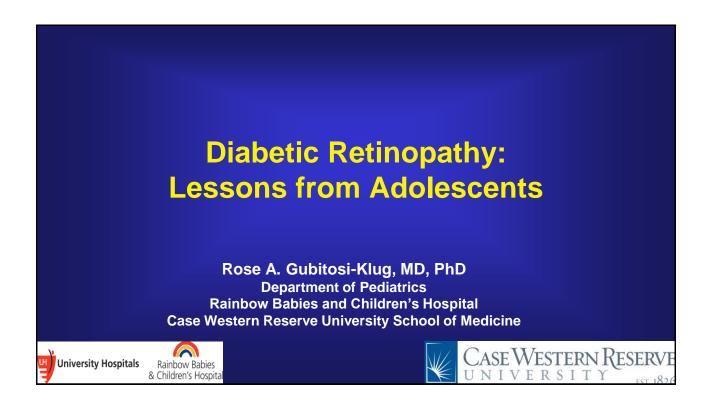
- Daniel van Raalte
- Lennart Tonneijck
- Erik van Bommel

Hiddo Lambers Heerspink

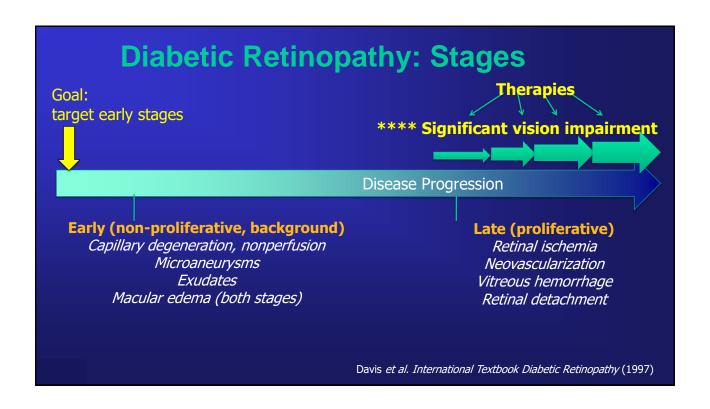
Pierre J. Saulnier

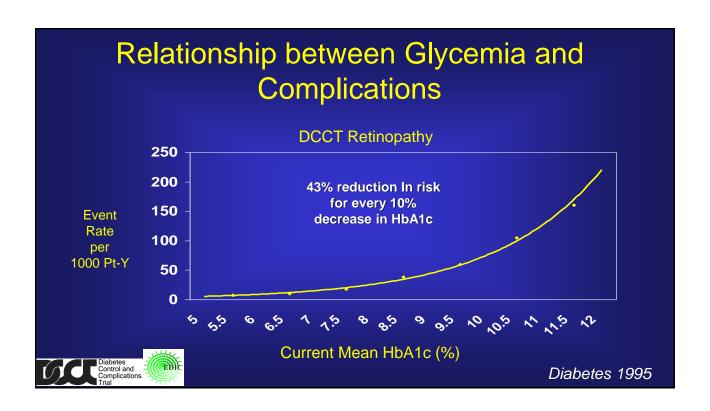
https://www.bjornstadlab.org

Funding Acknowledgements


- NIH/NIDDK:
 - R01 DK129211 (Bjornstad)
 - R21 DK129720 (Bjornstad and Gitomer)
 - K23 DK116720 (Bjornstad)
 - U2C DK114886 (Subaward #1: Bjornstad)
 - U2C DK114886 (Subaward #2: Bjornstad and Waikar)
 - P30 DK116073 (P&F Award: Bjornstad)
- JDRF:
 - 2-SRA-2019-845-S-B (Bjornstad)
 - 3-SRA-2017-424-M-B (Kretzler, Subaward: Bjornstad)
- AHA:
 - 20IPA35260142 (Bjornstad)
- **Boettcher Foundation:**
 - 2020 Webb Waring Biomedical Award (Bjornstad)

Presenter Disclosure Nothing to disclose.


Cases to learn from...


- 1. Pathogenesis of Diabetic Retinopathy
- 2. Registry of youth with diabetes
- 3. DCCT/EDIC Adolescents
- 4. Youth-onset T2D and retinopathy progression

Rising rates of retinopathy

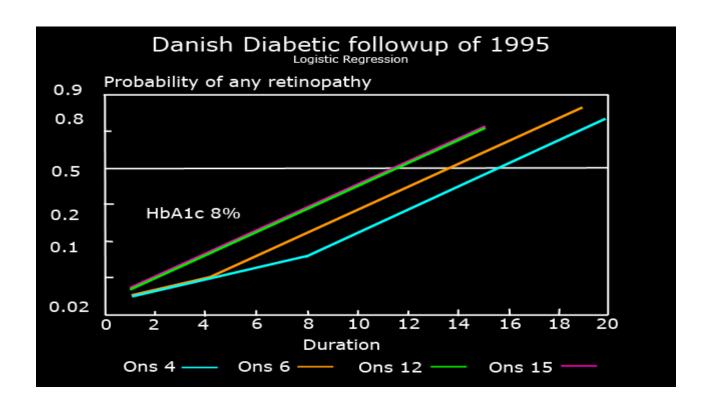
In America...

- 3.7 million individuals age 40 and older are blind or visually impaired (2010)
 - Diabetic retinopathy is the leading cause of blindness among working age adults
- 7.7 million individuals age 18 or older with diabetic retinopathy
 - Progressive disorder
 - Costs of medical expenses and lost productivity is soaring...\$500 million annually

Even more children at risk

- Obesity epidemic with rising rates of T2DM in children
 - Treatment Options for Type 2 Diabetes in Youth (TODAY)
 - Difficult to manage with 40-50% treatment failure rates within one year

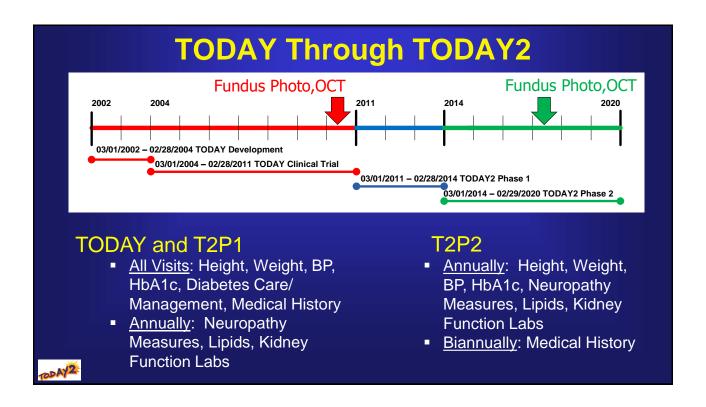
(TODAY Study Group, NEJM 2012)



Even more children at risk

- Youth with T2D develop complications at a faster rate than T1D
 - Within four years of diagnosis...
 - 30% with hypertension
 - 45% with hyperlipdemia
 - 17% with microalbuminuria
 - 14% with retinopathy
 - Major complications, including blindness, reported by 10 years post-diagnosis

Diabetes Care 2014; 37, 436-43


DCCT/EDIC Adolescents: Cases of PDR and CSME increase from 18 to 21 years of age

		PDR			CSME
	Follow-up*	Cases	Rate [#] (95% UCL)	Cases	Rate [#] (95% UCL)
Age < 18 (n=195)	456.9	0	0 (6.6)	1	2.2 (10.4)
Age < 19 (n=222)	642.6	0	0 (4.7)	2	3.1 (9.8)
Age < 20 (n=244)	846.4	0	0 (3.5)	3	3.5 (9.2)
Age < 21 (n=290)	1056.4	3	2.8 (7.3)	7	6.6 (12.4)

*Total follow-up (years); # Rate per 1,000 individuals at risk for one year; UCL=upper confidence limit.

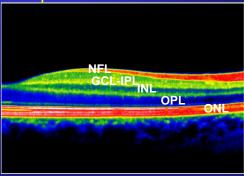
Gubitosi-Klug, et. al., Pediatric Diabetes 2019;20(6): 743-9

TODAY – TODAY2 Cohort Characteristics					
		TODAY (n=699)	T2P1 (n=572)	T2P2 (n=517)	
Age in years (mean, S	D)	14.0 (2.0)	18.3 (2.5)	21.2 (2.5)	
Female		64.7%	64.7%	65.0%	
Race/Ethnicity	Hispanic	39.8%	39.7%	38.1%	
	Non-Hispanic Black	32.5%	32.9%	34.0%	
	Non-Hispanic White	20.5%	20.5%	20.3%	
	Other	7.3%	7.0%	7.5%	
Years since diagnosis of T2D (mean, SD)		0.6 (0.5)	4.5 (1.5)	7.5 (1.5)	
Years since randomization in TODAY (mean, SD)			3.9 (1.3)	6.9 (1.3)	
BMI in kg/m² (mean, SD)		34.9 (7.6)	36.5 (8.2)	36.3 (8.4)	
HbA1c in % (mean, SD)		6.0 (0.7)	8.4 (2.9)	9.3 (3.0)	
TODAY 2					

	TODAY	TODAY2
Mean T2D duration (years)	4.92	11.93
Diabetic retinopathy stages		
No definitive diabetic retinopathy	317 (86%)	187 (51%)
Very mild NPDR	53 (14%)	82 (22%)
Mild NPDR	0 (0%)	60 (16%)
Moderate NPDR	0 (0%)	14 (4%)
Moderately severe NPDR	0 (0%)	3 (1%)
Severe NPDR	0 (0%)	5 (1%)
Early or stable, treated PDR	0 (0%)	10 (3%)
High risk PDR	0 (0%)	4 (1%)
≥ 3 step progression on ETDRS scale		65 (18%)
Macular edema	0 (0%)	13 (4%)

Risk Factors	HR [95% CI]
Age at baseline (per year)	0.97 [0.5, 1.88]
Sex (female vs. male)	0.59 [0.34, 1.02]
Race/Ethnicity (Ref: Non-Hispanic White)	
Hispanic	1.48 [0.65, 3.35]
Non-Hispanic Black	1.82 [0.8, 4.13]
Ever smoker	1.02 [0.6, 1.75]
T2D duration at TODAY2 Fundus exam	2.1 [0.85, 5.2]
Loss of glycemic control (HbA1c ≥ 8%)	19.23 [4.62, 80.07]
Mean HbA1c (per 1% increase)	2.23 [1.81, 2.75]
Mean BMI (per 5 kg/m² increase)	0.84 [0.7, 1.02]
Mean C-Pep total AUC (per 100 ng/ml·min increase)	0.8 [0.73, 0.89]

Fundus Photographs and Optical Coherence Tomography


Fundus Photography

Diabetic retinopathy assessment based on 7-standard field Early Treatment Diabetic Retinopathy Study (ETDRS) scale

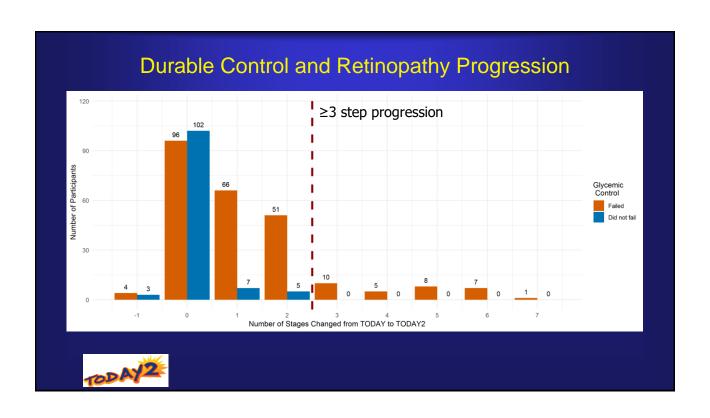
TODAY

Spectral-Domain OCT

Retinal thickness measurement based on digital Optical Coherence Tomography (OCT) centerfield and inner subfield of the retina.

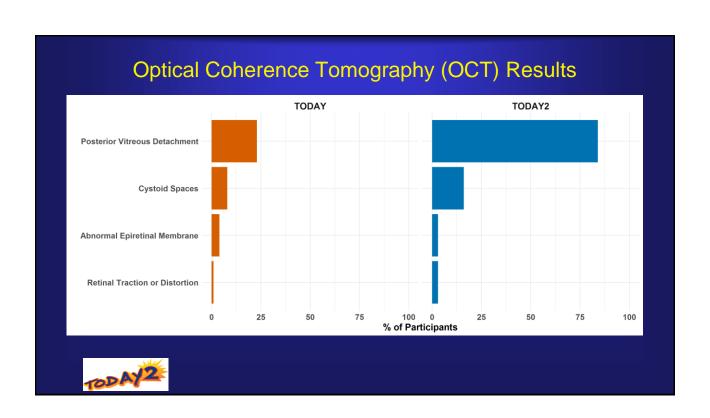
Fundus Photographs and OCT Exams

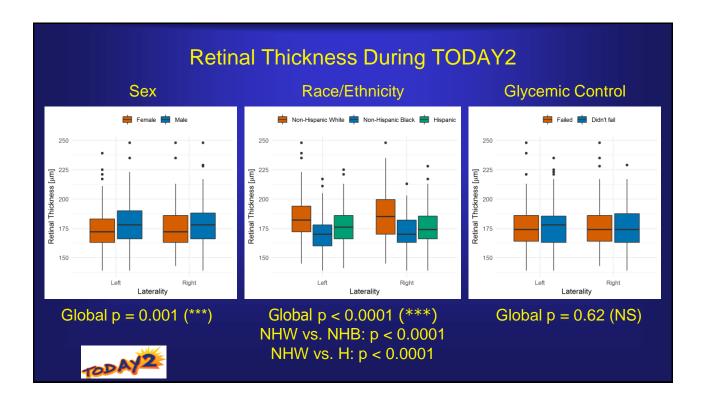
- Fundus and OCT exams were conducted in 2011 and 2018.
- In 2011, OCT was conducted on time-domain at some sites, and on spectral domain at other sites
- Longitudinal analyses focus on patients with repeated exams.
- Retinal Thickness (SD-OCT) will be analyzed cross-sectionally.


	2011	2018	Longitudinal sample
Fundus	518	419	370
OCT	515	414	367
SD-OCT	216	414	157

Fundus Photography Results

	TODAY	TODAY2
Diabetic retinopathy		
No definitive diabetic retinopathy	317 (86%)	187 (51%)
Very mild NPDR	53 (14%)	82 (22%)
Mild NPDR	0 (0%)	60 (16%)
Moderate NPDR	0 (0%)	14 (4%)
Moderately severe NPDR	0 (0%)	3 (1%)
Severe NPDR	0 (0%)	5 (1%)
Early or stable, treated PDR	0 (0%)	10 (3%)
High risk PDR	0 (0%)	4 (1%)
>= 3 step progression		65 (18%)
Macular edema	0 (0%)	13 (4%)





≥3 Step Diabetic Retinopathy Progression – Risk Factors

- Highly significant risk factors of ≥ 3 step progression of diabetic retinopathy (DR) are:
 - Higher Mean HbA1c (%) increases risk
 - Lower Mean C-Peptide AUC (ng/dl·min) increases risk
 - Higher Mean Glucose AUC (mg/dl·min) increases risk
- Race, sex, and duration of diabetes were not significant at the 5% level.

Retinal Thickness (RT) – Risk Factors

- Retinal thickness is significantly influenced by
 - Race/ Ethnicity: NHB and Hispanic had lower RT than NHW.
 - Sex: Females had lower RT
 - Diabetes duration: Participants with longer T2D duration at exam had lower RT
- Mean HbA1c, BMI, Glucose AUC, C-Peptide, and Cholesterol were not significant at the 5% significance level.

Adjudicated Eye Disease Events

	# Patients	% Patients*	Event Rate (per 1000 PYr)
Individual Events			
NPDR	54	21.3	9.08
PDR	14	5.5	2.35
Macular edema	11	4.3	1.85
Vitreous hemorrhage	6	2.4	1.01
Cataracts	4	1.6	0.67
Glaucoma	3	1.2	0.50
All Events	92	36.2	15.47

*based on number of patients with any CAC eye report N= 254

Summary

- Loss of glycemic control is a predictor for progression of diabetic retinopathy
 - Advanced diabetic retinopathy requiring treatment is present in 9 % of the TODAY cohort with mean 12 years T2D duration
- Retinal thickness varies by race/ethnicity and by sex

Acknowledgements

Collaboration among investigators, research coordinators, and participants!

Diabetes Care Summit

Breakout Session II:

- Pharmacology Update
- The Role of Mental Health in Diabetes Care

Diabetes Care Summit

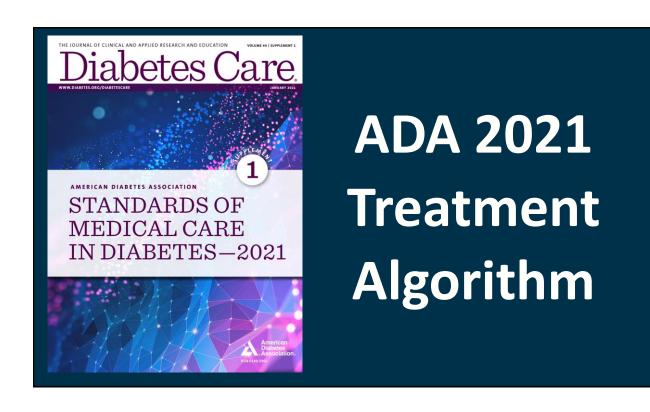
Objectives

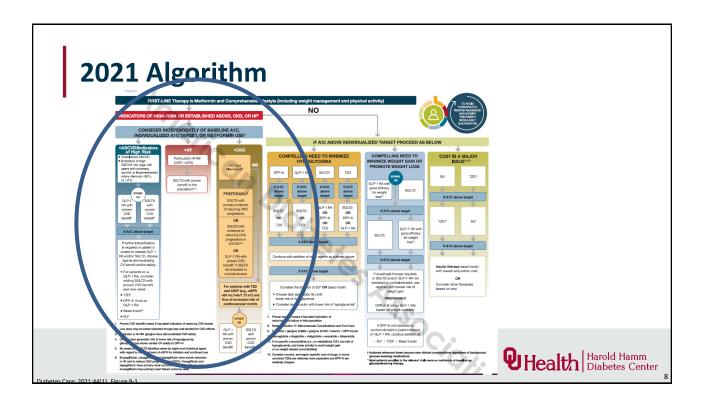
- Describe the 2021 ADA Standards of Care Treatment recommendations
- Summarize key evidence from trials supporting expanded FDA indications for anti-glycemic agents
- Compare and contrast GLP1 agonists, SGLT2 inhibitors and insulin

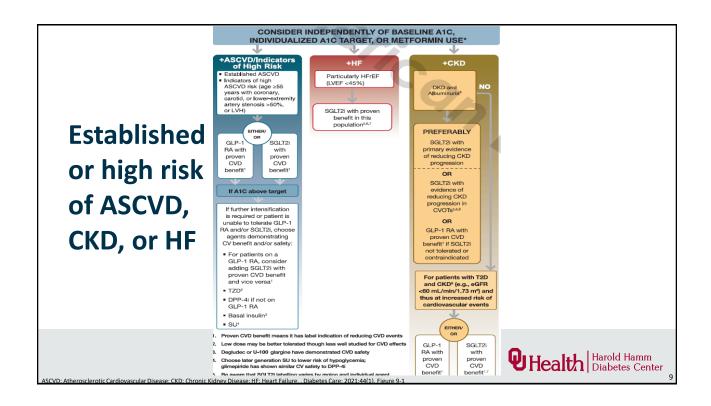
Agenda

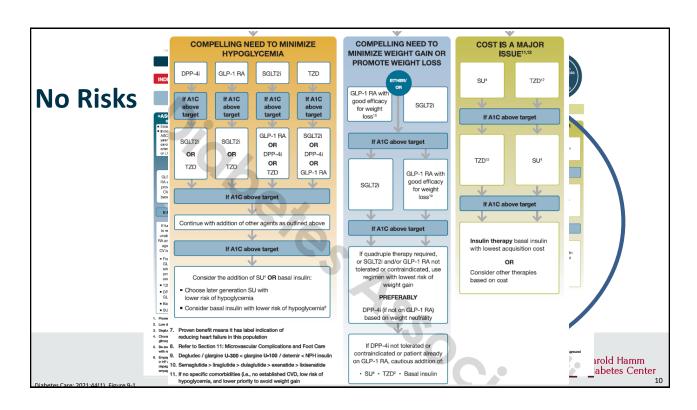
- 1. ADA 2021 Treatment Algorithm
- 2. GLP-1 Agonists
- 3. SGLT-2 Inhibitors
- 4. Insulin Review
- 5. Other Medications
- 6. Medication Access

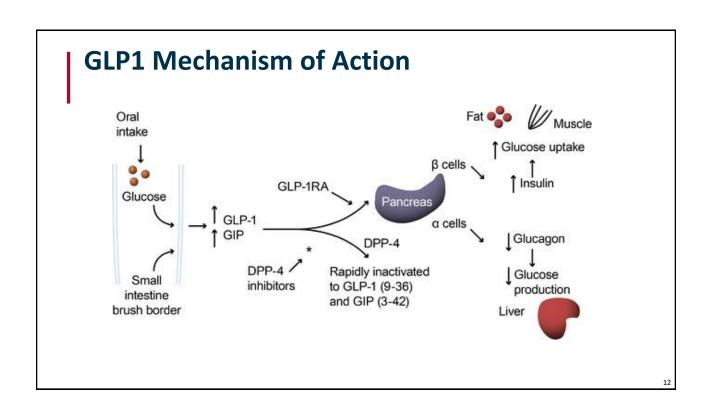
4


Treatment Options


- Biguanide


- Biguanide
 Sulfonylureas (SU)
 Metglitinides
 Thiazolidinediones (TZD)
 Alpha-glucosidase inhibitors (AGi)
 Dipeptidyl Peptidase-4 Inhibitors (DPP4)
 Glucagon-like Peptide-1 Agonists (GLP1)
 Sodium Glucose Co-Transporter-2 Inhibitors (SGLT2)
- Amylin Anàlogue
- Dopamine Agonist
- Bile Acid Sequestrant (BAS) "Others"





GLP-1 Agonists and SGLT-2 Inhibitors

GLP1 Class Overview

Drugs	 Exenatide (4/2005) Liraglutide (1/2010) Dulaglutide (9/2014) Lixisenatide (7/2016) Semaglutide (12/5/2017)
Efficacy	• ~1-2% A1c lowering

13

SGLT2 Mechanism of Action Proximal Distal Collecting Glomerulus Tubule Tubule Duct S1 Glucose filtration SGLT2 SGLT1 SGLT2 inhibitor Reduced glucose reabsorption Loop Increased of glucose excretion

SGLT2 Class Overview

Drugs	 Canagliflozin (approved 3/2013) Dapagliflozin (approved 1/2014) Empagliflozin (approved 8/2014) Ertugliflozin (approved 12/20/2017)
Efficacy	• ~0.5-1% A1c lowering

ı	SUSTAIN-6 (semaglutide		REWIND (dulaglutide)	
	LEADER (liraglutide)		PIONEER set (semaglutide)	
2015	2016	2017	2019	2020
EMPA-REG empagliflozin)		CANVAS, CANVAS-R	CREDENCE (canagliflozin)	EMPEROR- Reduced
		(canagliflozin)	DECLARE-TIMI 58 (dapagliflozin)	(empagliflozin) DAPA-CKD
<mark>LP-1</mark> GLT-2			DAPA-HF (dapagliflozin)	(dapagliflozin)

PIONEER-6

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes

Mansoor Husain, M.D., Andreas L. Birkenfeld, M.D., Morten Donsmark, Ph.D., Kathleen Dungan, M.D., M.P.H., Freddy G. Eliaschewitz, M.D., Denise R. Franco, M.D., Ole K. Jeppesen, M.Sc., Ildiko Lingvay, M.D., M.P.H., M.S.C.S., Ofri Mosenzon, M.D., Sue D. Pedersen, M.D., Cees J. Tack, M.D., Mette Thomsen, M.D., D.M.Sc., Tina Vilsbøll, M.D., D.M.Sc., Mark L. Warren, M.D., and Stephen C. Bain, M.D., for the PIONEER 6 Investigators*

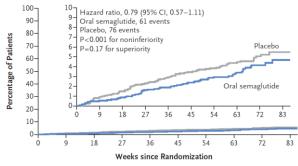
NEJM. 2019;381:841

PIONEER-6 Design

Drug	Semaglutide (oral) vs. placebo
Design	3,183 patients214 sites21 countries
Primary Endpoint	CV death, MI, or stroke
Duration	• 15.9 months
Population	 T2DM Age ≥ 50 with CVD or CKD or ≥ 60 with CV risk factor
Published	• 2019

NEIM. 2019;381:841 18

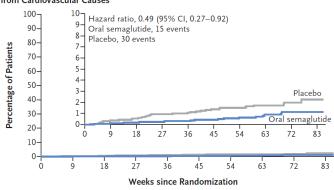
PIONEER-6 Baseline Characteristics


	Placebo (n=1592)	Semaglutide (n=1591)
Mean age	66	66
Mean BMI	32.3	32.3
Diabetes duration	15.1	14.7
Mean A1c	8.2%	8.2%
Systolic Blood Pressure	136	135
Diastolic Blood Pressure	76	76
Established CVD	84.5%	84.9%
CVD Risk Factors	15.5%	15.1%
eGFR ≤59 (mL/min/1.73m²)	26.5%	27.3%

NEJM. 2019;381:841 19

PIONEER-6 Primary Endpoint

	Placebo (n=1592)	Semaglutide (n=1591)	Hazard Ratio (95% CI)	p-value
CV death,	4.8%	3.8%	0.79	p<0.001(N)
MI, stroke			(0.57-1.11)	



NEIM. Figure 1A. 2019;381:841

PIONEER-6 Cardiovascular Outcomes

	Placebo	Semaglutide	Hazard Ratio (95%
	(n=1592)	(n=1591)	CI)
Death from CV Cause	1.9%	0.9%	0.49 (0.27-0.92)

Death from Cardiovascular Causes

NEJM. Figure 1D. 2019;381:841

CREDENCE

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 13, 2019

VOL. 380 NO. 24

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

V. Perkovic, M.J. Jardine, B. Neal, S. Bompoint, H.J.L. Heerspink, D.M. Charytan, R. Edwards, R. Agarwal, G. Bakris, S. Bull, C.P. Cannon, G. Capuano, P.-L. Chu, D. de Zeeuw, T. Greene, A. Levin, C. Pollock, D.C. Wheeler, Y. Yavin, H. Zhang, B. Zinman, G. Meininger, B.M. Brenner, and K.W. Mahaffey, for the CREDENCE Trial Investigators*

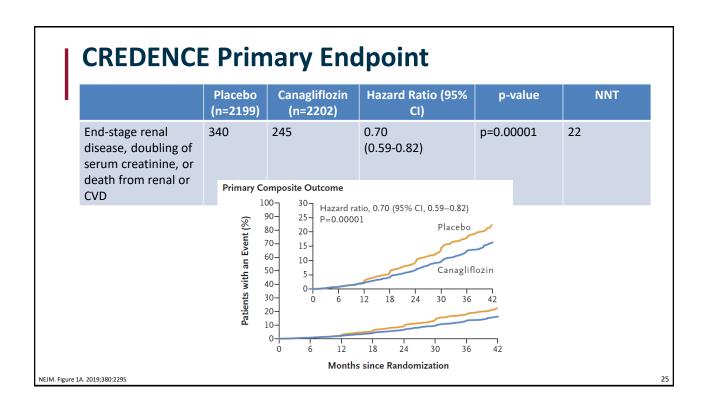
NEIM. 2019;380:2295 22

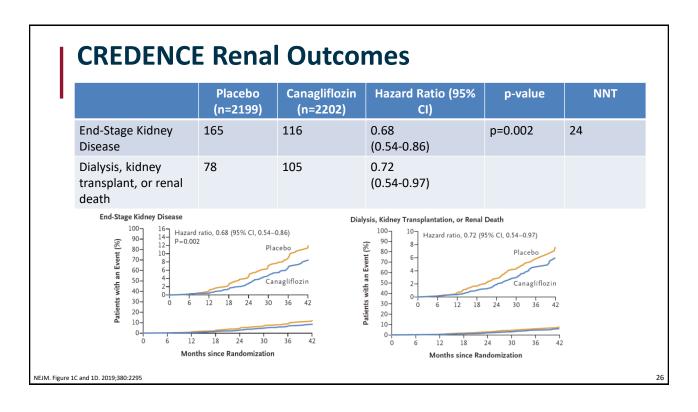
21

CREDENCE Design

Drug	Canagliflozin vs. placebo
Design	4,401 patients690 sites34 countries
Primary Endpoint	Composite end-stage kidney disease, doubling of serum creatinine, or death from renal or CVD
Duration	• 2.62 years
Population	 T2DM Age ≥ 30 with A1c 6.5-12% with GFR 30 to <90 and urinary albumin-to-creatinine ratio >300 to 5000
Published	• 2019

NEJM. 2019;380:2295


2


CREDENCE Baseline Characteristics

	Placebo (n=2199)	Canagliflozin (n=2202)
Mean age	63.2	62.9
Mean BMI	31.3	31.4
Diabetes duration	16	15.5
Mean A1c	8.3%	8.3%
Systolic Blood Pressure	140.2	139.8
Diastolic Blood Pressure	78.4	78.2
Established CVD	50.3%	50.5%
eGFR (mL/min/1.73m ²)	56.3	56

NEJM. 2019;380:2295

24

CREDENCE CV Outcomes

	Placebo (n=2199)	Canagliflozin (n=2202)	Hazard Ratio (95% CI)	p-value	NNT
Death from CV Cause	140	110	0.78 (0.61-1.00)	p=0.05	
Composite CV death or hospitalization for HF	179	253	0.69 (0.57-0.83)	p<0.001	
CV death, MI, or stroke	269	217	0.80 (0.67-0.95)	p=0.01	40
Hospitalization for HF	141	89	0.61 (0.47-0.80)	p<0.001	46

NEJM. Figure 1C. 2019;380:2295

DAPA-HF

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 21, 2019

VOL. 381 NO. 21

Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction

J.J.V. McMurray, S.D. Solomon, S.E. Inzucchi, L. Køber, M.N. Kosiborod, F.A. Martinez, P. Ponikowski, M.S. Sabatine, I.S. Anand, J. Bělohlávek, M. Böhm, C.-E. Chiang, V.K. Chopra, R.A. de Boer, A.S. Desai, M. Diez, J. Drozdz, A. Dukát, J. Ge, J.G. Howlett, T. Katova, M. Kitakaze, C.E.A. Ljungman, B. Merkely, J.C. Nicolau, E. O'Meara, M.C. Petrie, P.N. Vinh, M. Schou, S. Tereshchenko, S. Verma, C. Held, D.L. DeMets, K.F. Docherty, P.S. Jhund, O. Bengtsson, M. Sjöstrand, and A.-M. Langkilde, for the DAPA-HF Trial Committees and Investigators*

NEIM. 2019;381:1995 28

DAPA-HF Design

NEJM. 2019;381:1995


Drug	Dapagliflozin vs. placebo
Design	4,744 patients410 sites20 countries
Primary Endpoint	Composite of worsening HF or CV death
Duration	• 18.2 months
Population	 Age ≥ 18 with an ejection fraction of 40% or less and NYHA Class II, III or IV symptoms
Published	• 2019

DAPA-HF Baseline Characteristics

	Placebo (n=2371)	Dapagliflozin (n=2373)
Mean age	66.5	66.2
Mean BMI	28.1	28.2
Diabetes	990	993
Previous Hospitalization for HF	47.5%	47.4%
Systolic Blood Pressure	121.6	122
Left Ventricular Ejection Fraction	30.9%	31.2%
NYHA Class II	67.4%	67.7%
NYHA Class III	31.7%	31.5%
NYHA Class IV	1%	0.8%
eGFR <60 (mL/min/1.73m ²)	40.7%	40.6%

NEJM. 2019;381:1995

29

	Placebo (n=2371)	Dapagliflozin (n=2373)	Hazard Ratio (95% CI)	p-value
Hospitalization for HF or death from CV cause	20.9%	16.1%	0.75 (0.65-0.85)	p<0.001
Hospitalization of Heart Failure	13.4%	9.7%	0.70 (0.59-0.83)	
Death from CV Cause	11.5%	9.6%	0.82 (0.69-0.98)	
Hospitalization for Heart Failure 100	21 24	Death from Cardiovascular Causes 100 30 Hazard 90 25 80 20 90 10 15 50 10 30 10	s ratio, 0.82 (95% CI, 0.69–0.98) 9 12 15 18 21 24 9 12 15 18 21 Months since Randomization	724

EMPEROR-Reduced

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 8, 2020

VOL. 383 NO. 15

Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure

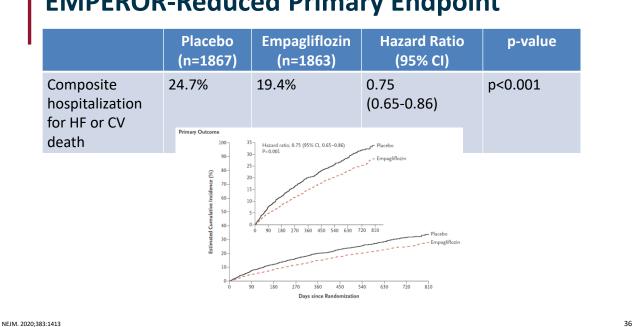
M. Packer, S.D. Anker, J. Butler, G. Filippatos, S.J. Pocock, P. Carson, J. Januzzi, S. Verma, H. Tsutsui, M. Brueckmann, W. Jamal, K. Kimura, J. Schnee, C. Zeller, D. Cotton, E. Bocchi, M. Böhm, D.-J. Choi, V. Chopra, E. Chuquiure, N. Giannetti, S. Janssens, J. Zhang, J.R. Gonzalez Juanatey, S. Kaul, H.-P. Brunner-La Rocca, B. Merkely, S.J. Nicholls, S. Perrone, I. Pina, P. Ponikowski, N. Sattar, M. Senni, M.-F. Seronde, J. Spinar, I. Squire, S. Taddei, C. Wanner, and F. Zannad, for the EMPEROR-Reduced Trial Investigators*

NEJM. 2020;383:1413

33

EMPEROR-Reduced Design

Drug	Empagliflozin vs. placebo
Design	3,730 patients520 sites20 countries
Primary Endpoint	Composite of CV death or hospitalization for HF
Duration	• 16 months
Population	 Age ≥ 18 with HF (NYHA Class II, III, or IV) with a left ventricular ejection fraction of 40% or less
Published	• 2020


NEJM. 2020:383:1413

EMPEROR-Reduced Baseline Characteristics

	Placebo (n=1867)	Empagliflozin (n=1863)
Mean age	66.5	67.2
Mean BMI	27.8	28
Diabetes	49.8%	49.8%
Previous Hospitalization for HF	30.7%	31%
Systolic Blood Pressure	121.4	122.6
Left Ventricular Ejection Fraction	27.2%	27.7%
NYHA Class II	75%	75.1%
NYHA Class III	24.4%	24.4%
NYHA Class IV	0.6%	0.5%
eGFR <60 (mL/min/1.73m ²)	48.6%	48%

NEJM. 2020:383:1413 35

EMPEROR-Reduced Primary Endpoint

EMPEROR-Reduced Secondary Endpoint

	Placebo (n=1867)	Empagliflozin (n=1863)	Hazard Ratio (95% CI)	p-value
First and Recurrent hospitalization	553	388	0.70 (0.58-0.85)	p<0.001
for HF	Wean Number of Events and Recurrent Hospital	Hazard ratio, 0.70 (95% CI, 0.58–0.85) P-0.001 90 180 270 360 450 Days since Randomia	Placebo Empagliflozin	

DAPA-CKD

NEJM. 2020;383:1413

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

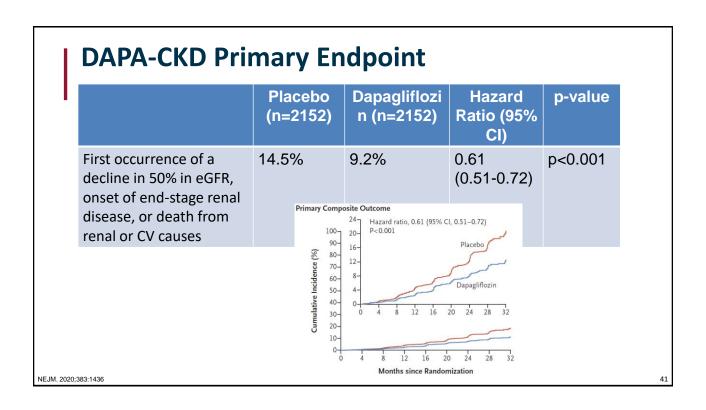
Dapagliflozin in Patients with Chronic Kidney Disease

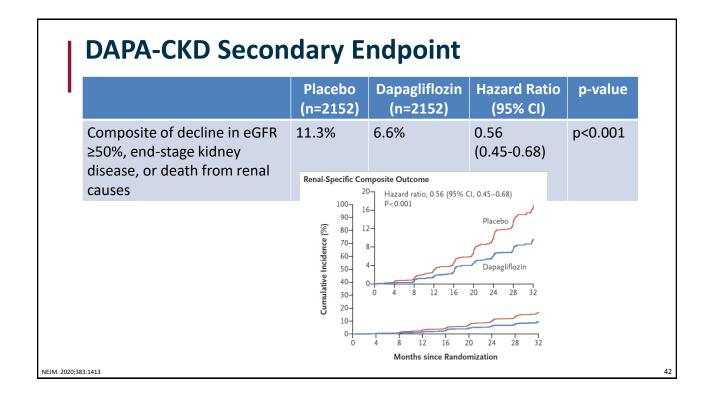
Hiddo J.L. Heerspink, Ph.D., Bergur V. Stefánsson, M.D., Ricardo Correa-Rotter, M.D., Glenn M. Chertow, M.D., Tom Greene, Ph.D., Fan-Fan Hou, M.D., Johannes F.E. Mann, M.D., John J.V. McMurray, M.D., Magnus Lindberg, M.Sc., Peter Rossing, M.D., C. David Sjöström, M.D., Roberto D. Toto, M.D., Anna-Maria Langkilde, M.D., and David C. Wheeler, M.D., for the DAPA-CKD Trial Committees and Investigators*

NEIM. 2020;383:1436

DAPA-CKD Design

Drug	Dapagliflozin vs. placebo
Design	4,304 patients386 sites21 countries
Primary Endpoint	 First occurrence of a decline in 50% in eGFR, onset of end-stage renal disease, or death from renal or CV causes
Duration	• 2.4 years
Population	Adults with or without type 2 diabetes with eGFR 25- 75 and urinary albumin-to-creatinine ratio of 200 - 5000
Published	• 2020

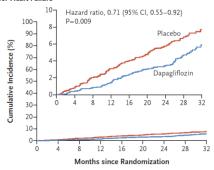

NEJM. 2020;383:1436

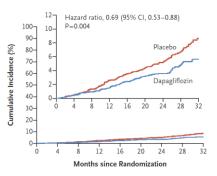

39

DAPA-CKD Baseline Characteristics

	Placebo (n=2152)	Dapagliflozin (n=2152)
Mean age	61.9	61.8
Mean BMI	29.6	29.4
Diabetes	67.4%	67.6%
HF	10.8%	10.9%
Systolic Blood Pressure	137.4	136.7
Diastolic Blood Pressure	77.5	77.5
eGFR (mL/min/1.73m ²)	43.2	43

NEJM. 2020;383:1436




DAPA-CKD CV Outcomes

	Placebo (n=2152)	Dapagliflozin (n=2152)	Hazard Ratio (95% CI)	p-value
Composite of death from CV Cause or hospitalization for HF	6.8%	4.6%	0.71 (0.55-0.92)	p=0.009
Death from any cause	6.8%	4.7%	0.69 (0.53-0.88)	p=0.004

Composite of Death from Cardiovascular Causes or Hospitalization for Heart Failure

Death from Any Cause

| GLP1 Comparison

NEJM. 2020;383:1413

	Trulicity (dulaglutide)	Byetta/Bydureon (exenatide)	Victoza (liraglutide)	Adlyxin (lixisenatide)	Ozempic/Rybelsus (semaglutide)
Dose	0.75-4.5 mg SubQ once weekly	5-10 mcg SubQ twice daily; 2 mg SubQ once weekly	0.6-1.8 mg SubQ once daily	10-20 mcg SubQ once daily	0.25-1 mg SubQ once weekly 3-14mg PO Once daily
Renal/ Hepatic Dosing	None	CrCl <30 NR	None	eGFR <15 NR	None
A/E	Nausea	Nausea	Tachycardia	Antibody development	Increased serum lipase; Nausea (highest incidence)
FDA Labeling Additions	Risk reduction of major CV events with established CVD or CV risk factors		Risk reduction of major CV events with established CVD (Saxenda = weight loss)		Risk reduction of major CV events with established CVD (ozempic only) (Wegovy = weight loss)
SoonerCare Tier	Tier 2	Tier 2 (Byetta) PA (Bydureon)	Tier 2	PA	Tier 3 (Ozempic) PA (Rybelsus)

LexiComp; NR: Not Recommended; PA: Prior Authorization; PO: By mouth

44

GLP1 Combination Products

	Soliqua (insulin glargine + lixisenatide)	Xultophy (insulin degludec + liraglutide)
Class	Basal insulin + GLP-1	Basal insulin + GLP-1
Starting Dose	Initial:15 units (15 units glargine, 5 mcg lixisenatide) once daily Switch from 30-60 units basal: 30 units (30 units glargine, 10 mcg lixisenatide) Max: 60 units (60 units of glargine, 20 mcg lixisenatide)	Initial: 10 units (10 units of degludec, 0.36 mg liraglutide) once daily Switch: 16 units (16 units of degludec, 0.58 mg liraglutide) Max: 50 units (50 units degludec, 1.8 mg liraglutide)
Price	\$61.86 per mL SoonerCare Tier 3 (must demonstrate why Lantus + alternative GLP1 cannot be used)	\$91.63 per mL SoonerCare Tier 3 (must demonstrate why Lantus + Victoza cannot be used)

Lexi-Comp 45

| SGLT2 Comparison

	Invokana (Canagliflozin)	Jardiance (Empagliflozin)	Farxiga (Dapagliflozin)	Steglatro (Ertugliflozin)
Dose	100-300 mg once daily	10-25 mg once daily; HF or CKD 10 mg once daily	5-10 mg once daily DM; 10mg HF; DKD/CKD 10 mg	5-15 mg once daily
Renal/ Hepatic Adjustments	eGFR 30- <60 max dose 100 mg; eGFR <30 UA >300 continue 100 mg; UA ≤300 not recommended; NR in severe hepatic impairment	eGFR <30 NR for new initiation	eGFR <45 NR for DM only; eGFR <25 no new initiation for HF or DKD/CKD	eGFR 30- <60 NR; eGFR <30 C/I; NR in severe hepatic impairment
A/E	Lower limb amputations; ketoacido tract infections, genitourinary fung		•	renal injury; urinary
FDA Labeling Additions	Risk reduction of CV events in established CVD, risk reduction in end-stage renal disease, doubling of serum creatinine, CV death, and hospitalization for HF with nepropathy and UA >300		Risk reduction for hospitalization for HF in established CVD; HF; CKD	
SoonerCare Tier	Tier 3	Tier 2	Tier 2	Tier 3

LexiComp; UA = urinary albumin excretion; NR: Not recommended

| SGLT2 Combination Products

Drug	Strengths Available	SoonerCare Tier
Canagliflozin + Metformin (Invokamet and Invokamet XR)	50/500, 50/1000, 150/500, 150/1000 mg XR: 50/500, 50/1000, 150/500, 150/1000 mg	Tier 3
Dapagliflozin + Metformin (Xigduo XR)	2.5/1000, 5/500, 5/1000, 10/500, 10/1000 mg	Tier 2
Empagliflozin + Linigliptin (Glyxambi)	10/5, 25/5 mg	Tier 2
Empagliflozin + Metformin (Synjardy and Synjardy XR)	5/500, 5/1000, 12.5/500, 12.5/1000 mg XR: 5/1000, 10/1000, 12.5/1000, 25/1000 mg	Tier 2
Dapagliflozin + Saxagliptin (Qtern)	5/5, 10/5 mg	Tier 3
Ertugliflozin + Metformin (Segluromet)	2.5/500, 2.5/1000, 7.5/500, 7.5/1000 mg	Tier 3
Ertugliflozin + Sitagliptin (Steglujan)	5/100, 15/100 mg	Tier 3
Empagliflozin + Linagliptin + Metformin (Trijardy XR)	10/5/1000, 25/5/1000, 5/2.5/1000, 12.5/2.5/1000 mg	PA

LexiComp 47

FDA Labeling Updates

Sodium-glucose Cotransporter-2 Inhibitors (SGLT-2)

- Jardiance (empagliflozin): CVD, HF*
- Invokana (canagliflozin): CVD, CKD, HF/CKD
- Farxiga (dapagliflozin): CVD, HF, CKD

Glucagon-like Peptide 1 Agonists (GLP-1)

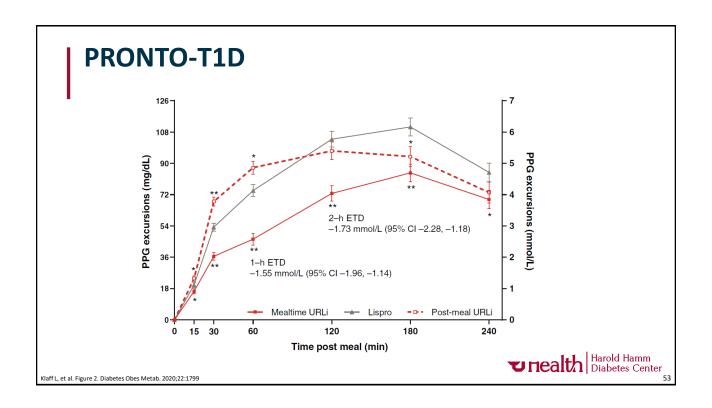
- Victoza (liraglutide): CVD
- Trulicity (dulaglutide): CVD
- Ozempic (semaglutide): CVD

CVD: Cardiovascular disease; HF: Heart failure; HF*: off-label indication; CKD: chronic kidney disease, Diabetes Care; 2021;44(1); FDA Package Labeling

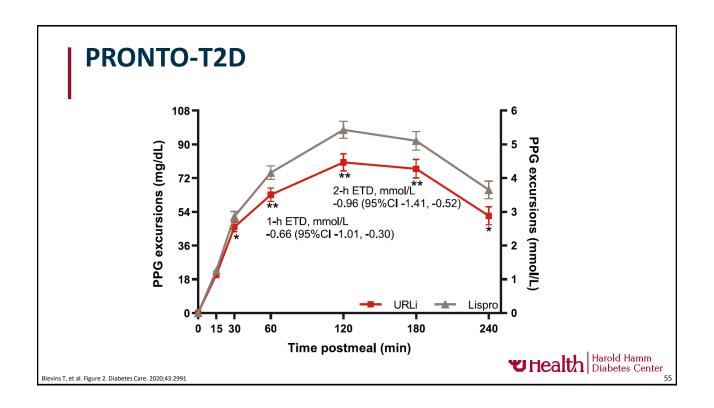
Insulin

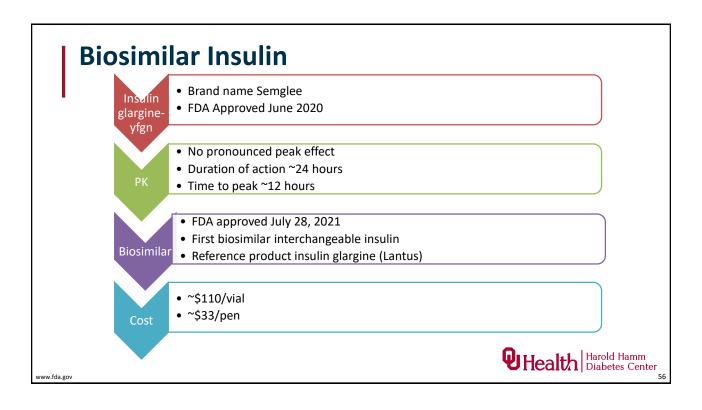
Historic Timeline of Rapid Acting Insulin

Insulin regular Insulin lispro Insulin glulisine Insulin lispro-aabç (Humulin R) (Humalog) (Apidra) (Lyumjev) 1983 1991 2017 2020 1996 2002 2004 Insulin regular Insulin aspart Insulin lispro, (Novolog) biosimilar (Admelog) (Novolin R) Faster-acting insulin aspart (Fiasp) Wong EY, Kroon L. Ultra-rapid-acting insulins: how fast is really needed? Clinical Diabetes. Epub ahead of print. https://doi.org/10.2337/cd20-0119, Figure 1


New Rapid Acting

Drug(s)	Lyumjev (insulin lispro-aabc)		
Di ug(s)	Lydinjev (msdim ispro-aabc)		
Dose	 Administer at the start of a meal or within 20 minutes after starting 		
Mechanism	Contains treprostinil, a prostacyclin analogue, that enhances the absorption through increased local vasodilation and citrate, which speeds up absorption by enhancing vascular permeability		
Product Formulations and Cost	100 unit/mL vial (~\$300) 100 unit/mL and 200 unit/mL KwikPens (~\$126-252/pen)		
Pharmacokinetics	Onset: ~15-32 minutes Peak Effect: ~2 to 2.9 hours Duration: ~4.6-7.3 hours		
FDA Approval	• June 2020		


PRONTO-T1D


Participants	A1c 7-9.5%, BMI ≤ 35 kg/m2 treated with rapid-acting insulin for ≥90 days and basal insulin for ≥30 days				
Study Design	 26-week trial (with 8-week lead in to optimize basal insulin glargine or degludec) Participants randomized in a 4:4:3 to one of three groups 1) double-blind mealtime ultra rapid lispro (URLi) (n=451), 2) lispro (n=442), or 3) open-label post meal URLi (n=329) 				
Primary Endpoint	Change in A1c				
Outcomes	 URLI was noninferior to lispro in mealtime and post meal Mealtime URLi was superior to lispro in reducing 1 and 2-hour post prandial excursions starting at 15 minutes (p<0.001) 				
o Ohao Matak 2020-224700	The Ith Harold Ham Diabetes C				

Klaff L, et al. Diabetes Obes Metab. 2020;22:1799

Participants	• Adults with type 2 diabetes using insulin for ≥1 year and A1c 7-10% treated with basal insulin in combination with one or more prandial insulin injections for ≥90 days and treated with up to 3 oral agents with stable dosing for ≥90 days
Study Design	 26-week trial (with 8-week lead in to optimize basal insulin glargine or degludec) Participants randomized in 1:1 to one of two groups 1) double-blind ultra rapid lispro (URLi) (n=336) or 2) lispro (n=337)
Primary Endpoint	Change in A1c
Outcomes	 URLI was noninferior to lispro Mealtime URLi was superior to lispro for 1 and 2-hour post prandial control starting at 30 minutes (p<0.001)

Other Medication Updates

Statin Recommendations

Primary Prevention

ASCVD:

- Acute coronary syndrome
- History of MI
- · Stable or unstable angina
- Stroke
- · Transient ischemic attack
- · Peripheral artery disease

ASCVD High Risk:

- History of multiple major ASCVD events or
- 1 major ASCVD event and multiple high-risk conditions

Age 40-75 without ASCVD moderate intensity

Age 20-39 with ASCVD risk factors, consider statin

High risk with multiple ASCVD risk factors or aged 50-70, use high intensity

10-year ASCVD risk 20% or higher, high intensity and consider ezetimibe to help reduce LDL by ≥50%

Secondary Prevention

All ages and ASCVD high intensity

Very high risk, if LDL ≥70 mg/dL on maximally tolerate statin, consider adding ezetimibe or PCSK9 inhibitor

Age >75 and already on statin and tolerating, can continue

<u>Diabetes Specific</u> <u>ASCVD Risk Factors</u>:

- Long duration of diabetes (≥10 years for type 2 and ≥20 years for type 1)
- Albuminuria ≥30
- eGFR <60
- Retinopathy
- Neuropathy
- ABI < 0.9

ASCVD: atherosclerotic cardiovascular disease, Diabetes Care; 2021;44(1), 2018 AHA/ACC Guideline on the Management of Blood Cholesterol

Drug(s)	Nexletol (bempedoic acid)	
Class and Mechanism	Adenosine triphosphate-citrate lyase (ACL) inhibitor	Bempedoic Acid
Indication	 Treatment of established atherosclerotic cardiovascular disease as an adjunct to diet and maximally tolerated statin therapy in adult patients who require additional LDL lowering Treatment of heterozygous familial hypercholesterolemia 	Citrate ACLY Acetyl-Co
Formulation	180mg once daily or combination with ezetimibe 180mg/10mg	•
FDA Approval	• February 2020	

Nexletol (bempedoic acid) Considerations

Adverse Effects	 Gout, hyperuricemia, afib, abdominal pain, increased liver enzymes, increased serum creatine kinase
Monitor	Lipid levels, signs/symptoms of hyperuricemia
Caution	 Tendon rupture within weeks to months of treatment initiation; avoid concomitant use with simvastatin >20mg and pravastatin >40mg
Price	 \$13.99/tablet https://www.nexletolhcp.com/access \$10 copay card

Harold Hamm Diabetes Center

FDA Package Labeling; Lexi-Comp

Nexletol (bempedoic acid) Clinical Trials

•	
Evidence for Approval	2 randomized, double-blind, placebo-controlled, multicenter 52-week studies enrolling 2330 participants in study 1 and 770 participants in study 2 (CLEAR Wisdom).
Outcomes	In Study 1, the mean baseline LDL was 103mg/dL and the primary endpoint was statistically significant for the percent change from baseline to week 12 in LDL, -18% or 19.2mg/dL, p<0.001. In Study 2, the mean baseline LDL was 120.4mg/dL, and the primary endpoint was statistically significant for the percent change from baseline to week 12 in LDL, -17%, p<0.001. With the exception of gout, the adverse effects were not significantly different compared to placebo.
Place in Therapy	Provides a non-statin alternative for LDL lowering for patients that cannot tolerate statins due to muscle pain. An ongoing trial (CLEAR CV Outcomes) is assessing the impact on event risk reduction

Nexletol FDA package insert. Ray K. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380:1022. Goldberg AC. Effect of bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease. JAMA. 2019;322:1780.

Orug

Gvoke for the treatment of severe hypoglycemia in patients ≥2 years of age

Dose

Prefilled syringe/auto-injector 0.5mg/0.1mL for pediatric patients <45kg and 1mg/0.2mL for adult patients

Price

\$336/device (auto-injector or prefilled syringe)

Chypopen

Harold Hamm Diabetes Center

On the Horizon

Tirzepatide: Dual GIP/GLP-1 Agonist

SURPASS-1

- 478 adults with type 2 diabetes and average diabetes duration of 4.7 years with average A1c 7.94%, randomized to 5, 10, or 15mg vs placebo for 40 weeks
- Average A1c improvements ranged from 1.69-1.75%, 31-52% of participants achieved A1c < 5.7%
- $\bullet \ \text{Average weight loss ranged from 6.3-7.8kg, 13-27\% of participants achieved a 15\% weight loss}\\$

SURPASS-2

- 1,879 adults with type 2 diabetes uncontrolled on metformin with average A1c 8.28% randomized to 5, 10, or 15mg vs semaglutide 1mg for 40 weeks
- Average A1c improvements ranged from 2.01-2.3% and was noninferior and superior to semaglutide, 29-51% of participants achieved A1c <5.7%
- Average weight loss ranged from 1.9-5.5kg, 40% of participants achieved a 15% weight loss

SURPASS-3

- 1,444 participants with type 2 diabetes uncontrolled with metformin ± SGLT2 with average A1c 8.17%, average duration of 8.4 years randomized to 5, 10, or 15mg or basal insulin (degludec) for 52 weeks
- \bullet Average A1c improvements ranged from 1.93-2.37%, 82-93% of participants achieved A1c <7%
- Weight loss ranged from 7.5-12.9kg

SURPASS-5

- 475 adults with type 2 diabetes uncontrolled with basal insulin (glargine) ± metformin randomized to 5, 10, or 15mg or placebo average A1c 8.31%, average duration 13.3 years for 40 weeks
- Average A1c improvements ranged from 2.2-2.9%, 93-97% participants achieved A1c <7%
- Average weight loss ranged from 6.2-10.9kg

SURPASS Data www.healio.com; Rosenstock J. et al. SURPASS-1 Lancet 2021; Frias JP. et al. SURPASS-2 N Engl J Med 2021

Medication Access

SoonerCare Traditional Coverage

- Claims for preferred testing supplies and CGMs will not count against monthly script limit
- CGMs require a prior authorization
- One glucometer kit per year (Freestyle, One Touch, Precision)
- One bottle of control solution per year
- 200 insulin syringes/month
- 200 lancets/month
- 100 ketone strips/month
- 200 pen needles/month

https://oklahoma.gov/ohca/individuals/mysoonercare/soonercare-benefits/prescriptions-drugs.html

SoonerCare CGM Eligibility

- Finger stick blood sugars ≥ 4/day
- On insulin pump or multiple daily insulin injections ≥ 3/day
- Insulin treatment requires frequent adjustment based on glucose results
- Hypoglycemic episode within previous 6 months of two or more level 2 (<54 mg/dL) or one level 3 (severe)
- Health care visit with treating provider within 6 months of start

https://oklahoma.gov/ohca/individuals/mysoonercare/soonercare-benefits/prescriptions-drugs.htm

SoonerCare Prior Authorization Clues

Anti-Diabetic Medications Tier-2 Approval Criteria:

- A trial of 1 Tier-1 medication (must include a trial of metformin titrated up to maximum dose), or a patient-specific, clinically significant reason why a Tier-1 medication is not appropriate.
- For initiation with dual or triple therapy, additional Tier-2 medications may be approved based on current American Association of Clinical Endocrinologists (AACE) or American Diabetes Association (ADA) guidelines.
- A clinical exception will apply for medications with a unique FDA approved indication not covered by all Tier-1 medications. Tier structure rules for unique FDA approved indications will apply.

https://oklahoma.gov/ohca.html

DIABETIC MEDICATIONS							
IER 1	TIER 2	TIER 3	SPECIAL PA	THIAZOLIDINEDIONES	GLP-1 AGONISTS	MIGLITOL (GLYSET®)	SGLT-2/DPP-4 INHIBITOR/BIGUANIDE
				PIOGLITAZONE (ACTOS®)	DULAGLUTIDE	SGLT2 INHIBITOR	0.0.0.0.0.0
BIAGUANIDES	DDP-4 INHIBITORS	DDP-4 INHIBITORS	BIAGUANIDES		(TRULICITY®) • EXENATIDE (BYETTA®)	CANAGLIFLOZIN (INVOKANA®)	 DAPAGLIFLOZIN/SAX TIN/METFORMIN ER (QTERNMET® XR)
METFORMIN (GLUCOPHAGE®)	LINAGLIPTIN (TRADJENTA®)	 ALOGLIPTIN-METFORMIN (KAZANO®) 	METFORMIN SOLUTION (RIOMET®)		LIRAGLUTIDE (VICTOZA®)	CANAGLIFLOZIN/METFOR MIN (INVOKAMETTM)	EMPAGLIFLOZIN/LIN TIN/METFORMIN ER
METFORMIN SR (GLUCOPHAGE XR®)	LINAGLIPTIN-METFORMIN (JENTADUETOTM)	ALOGLIPTIN (NESINA®) ALOGLIPTIN-	METFORMIN LONG ACTING (FORTAMET®,		SGLT-2/DPP-4 INHIBITOR	ERTUGLIGLOZIN (STEGLATRO™)	(TRIJARDY™ XR)
METFORMIN-GLYBURIDE (GLUCOVANCE®)	SITAGLIPTIN (JANUVIA®)	PIOGLITAZONE (OSENI®)	GLUMETZA®) • METFORMIN ER		EMPAGLIFLOZIN/LINAGLIP TIN (GLYXAMBI®)	ERTUGLIFLOZIN/METFOR MIN (SEGLUROMET™)	
METFORMIN-GLIPIZIDE (METAGLIP®)	SITAGLIPTIN-METFORMIN (JANUMET®)	SAXAGLIPTIN (ONGLYZA®) SAXAGLIPTIN-METFORMIN MANAGEMENT	SUSPENSION (RIOMET ER™)			DOPAMINE AGONIST	
SULFONYLUREAS	SITAGLIPTIN-METFORMIN ER (JANUMET XR®)	(KOMBIGLYZE®, KOMBIGLYZE®XR)	AMYLINOMIMETIC			BROMOCRIPTINE (CYCLOSET®)	
• CHLORPROPAMIDE	SGLT2 INHIBITOR	THIAZOLIDINEDIONES	PRAMLINTIDE (SYMLIN®)			SGLT-2/DPP-4 INHIBITOR	
GLIMEPIRIDE (AMARYL®) GLYBURIDE (DIABETA®)	DAPAGLIFLOZIN (FARXIGA ®)	ROSIGLITAZONE (AVANDIA®)	DDP-4 INHIBITORS			DAPAGLIFLOZIN/SAXAGLIP TIN (OTERN®)	
GLYBURIDE MICRONIZED (MICRONASE®)	DAPAGLIFLOZIN- METFORMIN (XIGDUO™ XR)	PIOGLITAZONE- METFORMIN (ACTOPLUS MET®, ACTOPLUS MET	LINAGLIPTIN-METFORMIN (JENTADUETO® XR)*			ERTUGLIFLOZIN/SITAGLIP TIN (STEGLUJAN™)	
GLIPIZIDE (GLUCOTROL®)	EMPAGLIFLOZIN	XR®) • PIOGLITAZONE-	SGLT2 INHIBITOR			GLP-1 AGONISTS	
GLIPIZIDE SR (GLUCOTROL XL®)	(JARDIANCE® • EMPAGLIFLOZIN/METFOR	GLIMEPIRIDE (DUETACT®)	CANAGLIFLOZIN/METFOR MIN (INVOKAMETTM XR)			SEMAGLUTIDE (OZEMPIC®)	
TOLBUTAMIDE ALPHA-GLUCOSIDASE	MIN (SYNJARDY®) • EMPAGLIFLOZIN/METFOR	ROSIGLITAZONE- METFORMIN (AVANDAMET®)	GLP-1 AGONISTS	SoonerC	are	GLP-1 AGONISTS/INSULIN	
• ACARBOSE (PRECOSE®)	MIN ER (SYNJARDY® XR) GLINIDES	ROSIGLITAZONE- GLIMEPIRIDE (AVANDARYL®)	EXENATIDE ER (BYDUREON® BCISE™)	Coverag	е	INSULIN DEGLUDEC/ LIRAGLUTIDE (XULTOPHY® 100/3.6)	
GLINIDES	NATEGLINIDE (STARLIX®)		LIXISENATIDE (ADLYXIN®)			INSULIN GLARGINE/ LIXISENATIDE (SOLIQUA™	
REPAGLINIDE (PRANDIN®)	REPAGLINIDE-METFORMIN (PRANDIMET®)	ALPHA-GLUCOSIDASE INHIBITORS	SEMAGLUTIDE (RYBELSUS®)		_	100/33)	
THIAZOLIDINEDIONES	GLP-1 AGONISTS	MIGLITOL (GLYSET®)	SGLT-2/DPP-4 INHIBITOR/BIGUANIDES		Q	Health	Harold Hamn

Basaglar® (Insulin Glargine) Approval Criteria:

- An FDA approved diagnosis of diabetes mellitus; AND
- A patient-specific, clinically significant reason why the member cannot use Lantus® (insulin glargine) or Levemir® (insulin detemir).

Fiasp® (Insulin Aspart) Approval Criteria:

- An FDA approved diagnosis of diabetes mellitus; AND
- A patient-specific, clinically significant reason why the member cannot use NovoLog® (insulin aspart) must be provided.

Humulin® R U-500 Vials (Insulin Human 500 Units/mL) Approval Criteria:

- An FDA approved diagnosis of diabetes mellitus; AND $\,$
- A patient-specific, clinically significant reason why the member cannot use the Humulin® R U-500 KwikPen® (insulin human 500units/mL), which is available without prior authorization, must be provided.

Humalog® KwikPen® U-200 (Insulin Lispro 200 Units/mL) and Lyumjev™ (Insulin Lispro-aabc 200 Units/mL) Approval Criteria:

- An FDA approved diagnosis of diabetes mellitus; and
- Authorization of the 200 units/mL strength requires a patient-specific, clinically significant reason why the member cannot use the 100 units/mL strength (the brand formulation of Humalog[®] LL100 is preferred.

Toujeo® (Insulin Glargine) Approval Criteria:

- An FDA approved diagnosis of diabetes mellitus; AND
- A patient-specific, clinically significant reason why member cannot use Lantus® (insulin glargine), and member must be using a minimum of 100 units of Lantus® (insulin glargine) per day.

Tresiba® (Insulin Degludec) Approval Criteria:

- An FDA approved diagnosis of diabetes mellitus; AND
- A patient-specific, clinically significant reason why the member cannot use Lantus® (insulin glargine) or Levemir® (insulin detemir).

Harold Hamm Diabetes Center

https://oklahoma.gov/ohca.html

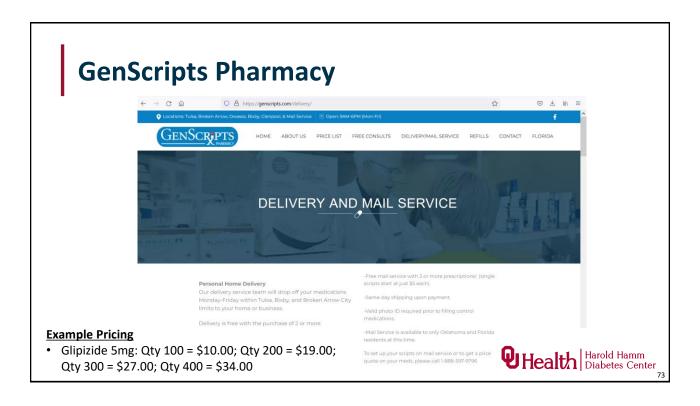
SoonerCare

Insulin Prior

Authorizations

WalMart \$4 **Program**

https://oklahoma.gov/ohca.html


	\$4 30 Day Qty	\$10 90 Day Qty
GLIMEPIRIDE 1MG, 2MG, 4MG	30	90
GLIPIZIDE 5MG, 10MG	60	180
METFORMIN 500MG, 850MG, 1000MG	60	180
METFORMIN ER 500MG TAB	120	360
METFORMIN ER 750MG TAB	60	180
	\$9 30 Day Qty	\$24 90 Day Qty
GLIPIZIDE ER 2.5MG, 5MG, 10MG	30	90
GLYBURIDE/METFORMIN 2.5/500MG, 5/500MG	60	180
	\$15 30 Day Qty	\$38 90 Day Qty
PIOGLITAZONE 15MG, 30MG, 45MG	30	90

Harold Hamm Diabetes Center

OU Campus Pharmacies

USE/GENERIC NAME (BRAND)	STRENGTH	#100	#200	#300	#400
ANTI-DIABETIC					
Glipizide (Glucotrol)	5mg	\$10.00	\$18.24	\$26.92	\$34.00
Glipizide (Glucotrol)	10mg	\$10.00	\$19.00	\$27.00	\$34.00
Metformin (Glucophage)	500mg	\$10.00	\$10.00	\$14.54	\$19.08
Metformin (Glucophage)	850mg	\$10.00	\$17.82	\$26.29	\$34.00
Metformin (Glucophage)	1000mg	\$10.00	\$17.06	\$25.14	\$33.22
Metformin ER (Glucophage XR)	500mg	\$10.00	\$19.00	\$27.00	\$34.00

Diabetes Care Summit

Outline

- Common Psychological Disorders & Impact on Diabetes Care
- Distinguishing Diabetes Distress and Depression in Clinical Practice
- Mental Health Screening and Treatment Recommendations

Common Psychological Concerns Among People with Diabetes

- Depression
- Anxiety
- Diabetes Distress

51.5 million

Estimated number of U.S. adults aged 18 or older affected by any mental health disorder in 2019.

Prevalence of Depression & Diabetes

- Increased risk of depression for youth & adults with T1D & T2D Depressive symptoms affect 1 in 4 adults with diabetes.
 Rates of clinical depression nearly 2-3x higher than general population.
- Greater risk for depression among specific groups:
 Women, those with longer diabetes duration, higher BMI, diabetes-related complications, and lower levels of education.
- Depression appears more persistent in people with diabetes. Depressive episodes are longer in duration, higher chance of recurrence; prognosis is worse than when each disease occurs separately.

Anderson, Freedland, Clouse, & Lustman, 2001; Kreider, 2017; Hermanns et al., 2013; Peyrot and Rubin, 1999; Ludman et al., 2004; Egede et al., 2005.

Depression Impacts Diabetes Self-Care

Table 1—Meta-analysis results aggregated by type of self-care

	n	z (P)	Weighted r	95% CI	Heterogeneity Q (df) and I^2	Fail-safe n ($r = 0.05$)
Overall analysis	47	9.81 (<0.001)	0.21	0.17-0.25	217.66 (46); $P < 0.001$; $I^2 = 78.87$	149
Appointment keeping	4	21.58 (<0.001)	0.31	0.29-0.34	$1.79(3)$; $P = 0.617$; $I^2 = 0.00$	22
Composite measures	18	9.66 (<0.001)	0.29	0.23-0.34	$38.60 (17); P = 0.002; I^2 = 55.96$	88
Diet	18	7.60 (<0.001)	0.18	0.13-0.22	33.67 (17); $P = 0.009$; $I^2 = 49.51$	37
Medication	18	5.15 (<0.001)	0.14	0.09-0.20	49.73 (16); $P < 0.001$; $I^2 = 65.82$	24
Exercise	13	7.89 (<0.001)	0.14	0.10-0.17	14.43 (12); $P = 0.274$; $I^2 = 16.86$	22
Glucose monitoring	15	3.50 (<0.001)	0.10	0.04-0.16	$31.00 (14); P = 0.006; I^2 = 54.82$	4
Foot care	2	0.88 (0.380)	0.07	-0.08 to 0.21	$4.27(1); P = 0.039; I^2 = 76.59$	NA

Gonzalez et al., 2008.

Impact of Depression & Diabetes

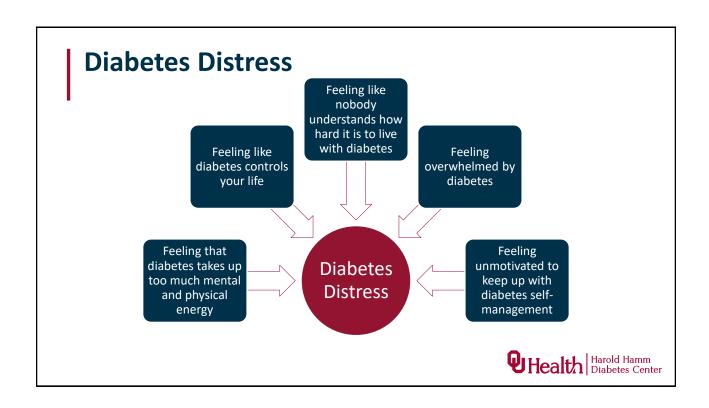
- Increased risk of complications
- Increased risk of hospitalizations
- Increased risk of morbidity and mortality
- Higher medical expenditures

Ciechanowski et al., 2000; Gary et al., 2000; Hanninen et al., 1999; de Groot, Anderson, Freedland, Clouse, & Lustman, 2001.

Prevalence of Anxiety

- Adults with diabetes have a 20% increased prevalence of anxiety disorders compared to those without diabetes.
- Prevalence of anxiety is similar among T1D & T2D. Only PTSD significantly predicted later development of T2D.
- Risk for anxiety disorders is highest among women, younger individuals, those with longer diabetes duration, and those with additional medical conditions

Grigsby et al., 2002.


Impact of Anxiety

- Worry about complications, frustration with imperfection, and fear of others' reactions may lead to avoidance of diabetes self-care behaviors.
- Fear of hypoglycemia may lead to intentional underdosing.
- Fear of needles/injections/blood can impact engagement in diabetes self-care behaviors.
- Fear of invasive self-care behaviors may impede site rotation and/or use of a new location for self-care tasks.

Diabetes Distress

refers specifically to the negative emotional experience resulting from the challenges of living with the demands and burden of diabetes.

Prevalence of Diabetes Distress

- Prevalence of diabetes distress ranges between 18-45% in T1D & T2D
- Almost 50% of people with diabetes experience diabetes distress over an 18-month period
- Approximately 1/3rd of adolescents with Type 1 diabetes
- Well-documented among partners of those with diabetes and parents of youth with diabetes

Perrin et al., 2017; Polonsky, Fisher, Hessler, & Johnson, 2016; Markowitz et al., 2012; Skinner, Joensen, & Parkin, 2020; Weissberg-Benchell & Antisdel-Lomaglio, 2011.

What causes diabetes distress?

Potential Causes of Diabetes Distress

- Acceptance of diabetes / Desire to be "normal"
- Self-judgment about diabetes care
- Feeling powerless
- · Frustration with diabetes demands
- Competing demands / chaotic Schedules
- Self-consciousness
- Navigating insurance/ healthcare system

- Lack of knowledge about diabetes in community
- Difficulty communicating with medical team
- Difficulty getting supplies, medications, etc
- Excessive worry about longterm complications
- Poor confidence in ability to manage diabetes

Potential Causes of Diabetes Distress

- Managing diabetes is 24/7/365.
- Feeling restricted with food choices
- Thoughts and feelings about blood sugars
- Loneliness, feeling "different"
- Negative interactions with family, friends, and medical team
- Cost of diabetes medications
- Lack of transportation

- Daily checks and insulin
- Carb counting
- Stigma
- Judgement from others
- Feelings of worry, shame, and selfjudgement
- Family communication
- Intolerance of uncertainty
- Family conflict

Major Depressive Disorder

What are the diagnostic criteria for MDD?

Major Depressive Disorder

- Depressed mood (includes irritable Diminished ability to think, mood in youth)
- Loss of interest/pleasure
- Excessive sleepiness or insomnia
- · Feelings of worthlessness or excessive guilt nearly every day
- Fatigue or loss of energy
- Psychomotor changes severe enough to be observable by others

- concentrate, or make decisions
- Recurrent thoughts of death or suicide
- Significant unexplained weight loss, weight gain, or change in appetite (e.g., 5% of body weight within a month)

Major Depressive Disorder

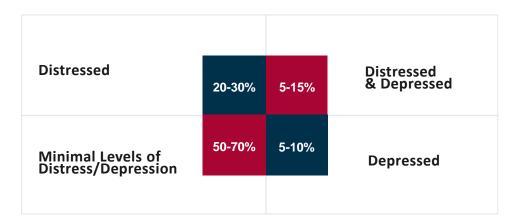
≥5 symptoms during the same two week period.

Symptoms must represent a change from previous functioning Symptoms must be present most of the day, nearly every day.

Depressed mood and/or anhedonia must be present.

May be subjective or observed by others (e.g., appears tearful) In youth, may present as irritable mood Markedly diminished interest/pleasure in all or almost all activities

Exclude symptoms clearly attributable to another psychological or medical condition.


Overlap between Major Depressive Disorder and Diabetes Distress

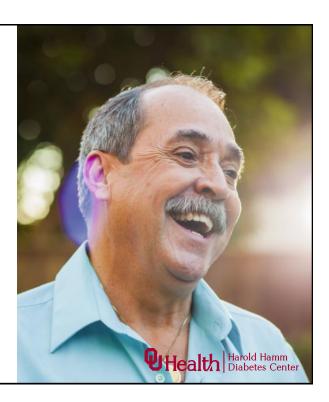
- Depressed mood (includes irritable mood in youth)
- Loss of interest/pleasure
- Excessive sleepiness or insomnia
- Feelings of worthlessness or excessive guilt nearly every day
- Fatigue or loss of energy
- Psychomotor changes severe enough to be observable by others
- · Diminished ability to think,

- concentrate, or make decisions
- Recurrent thoughts of death or suicide
- Significant unexplained weight loss, weight gain, or change in appetite (e.g., 5% of body weight within a month)



Estimated Prevalence Distribution

Skinner, Joensen, & Parkin, 2020. Kreider, 2017.


Screening Recommendations

Consider screening:

- Diabetes distress
- Depression
- Anxiety
- · Disordered eating
- Cognitive capabilities

At the following time points:

- · Initial visit
- Periodic intervals (e.g., annually)
- When there is a change in disease, treatment, or life circumstance

Screening Diabetes Distress

Measure	Description	Validated Population (s):
Problem Areas in Diabetes (PAID)	20-item measure of diabetes-specific distress (emotional distress, diabetes-specific burden)	Adults with T1D & T2D
Diabetes Distress Scale (DDS)	17-item measure of diabetes-specific distress in 4 domains: emotional burden, diabetes interpersonal distress, physician-related distress, and regimen-related distress	Adults with T1D & T2D
PAID – Peds Version	20-item measure of diabetes burden	Youth (ages 8–17 years) with T1D
PAID – Teen Version	26-item questionnaire measuring perceived burden of diabetes	Adolescents (ages 11–19 years) with diabetes
PAID – Parent Revised Version	4	

Young-Hyman, D., & Peyrot, M. (2012). *Psychosocial care for people with diabetes*. American Diabetes Association.

Screening Depression

Measure	Description	Validated Population (s):
Patient Health Questionnaire-9	9-item measure of depressive symptoms (corresponding to criteria for major depressive disorder)	Adults and Youth age 12 and older
Beck Depression Inventory–II (BDI-II)	21-item questionnaire evaluating somatic and cognitive symptoms of depression	Adults
Child Depression Inventory-2 (CDI-2)	27-item measure assessing depressive symptoms using child and parent report	Youth (ages 7–17 years)
Geriatric Depression Scale (GDS)	15-item measure was developed to assess depression in older adults	Adults (ages 55–85 years)

Young-Hyman, D., & Peyrot, M. (2012). *Psychosocial care for people with diabetes*. American Diabetes Association.

Screening Anxiety

Measure	Description	Validated Population (s):
Beck Anxiety Inventory (BAI)	21 items assessing self-reported anxiety	Adults
Hypoglycemia Fear Survey-II (HFS-II)	33 items assessing behavioral and worry dimensions of hypoglycemia in adults	Adults with type 1 diabetes
Children's Hypoglycemia Index (CHI)	27-item measure assessing depressive symptoms using child and parent report	Youth (ages 7–17 years)
Geriatric Depression Scale (GDS)	15-item measure was developed to assess depression in older adults	Adults (ages 55–85 years)

Young-Hyman & Peyrot, 2012. *Psychosocial care for people with diabetes*. American Diabetes Association.

Treatment Recommendations

Diabetes Distress vs Depression/Anxiety

Addressing Diabetes Distress Education Intervention Coping Skills **Emotion-Focused** Training Support **Diabetes Distress** Enhancing Stress Provider Management Training Relationship Changes to Treatment Modality Health Harold Hamm Diabetes Center

Emotion Focused Support

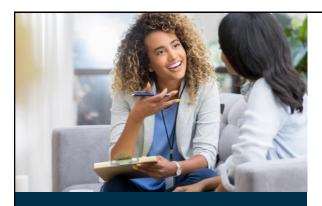
- Person-Centered Communication Style
 - Adopt a non-judgmental approach
 - Express empathy
 - Build partnership
 - Support autonomy

Fisher, Polonsky, & Hessler, 2019.

Emotion Focused Support

- Acknowledge and label feelings
- Summarize and Reflect
- Normalize
- Facilitate New Perspective
- Develop a Plan (if necessary)
- Follow-up

Fisher, Polonsky, & Hessler, 2019.



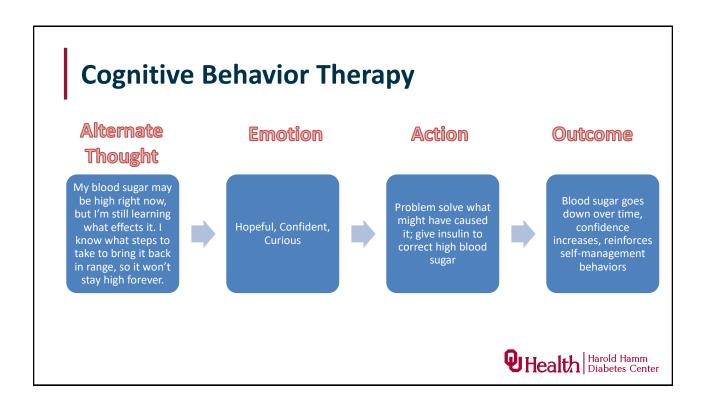
Referral to Mental Health Services

- No improvement in diabetes self-care following tailored education
- Self-identified difficulties making and maintaining behavioral changes
- Presence of mood symptoms or suspected psychological disorders that may impact diabetes care (e.g., mood disorders, serious mental illness, disorders that impact attention/cognitive functioning)
- Presence of symptoms or concern for disordered eating behaviors
- Diabetes-related family conflict
- · Declining or impaired ability to perform diabetes self-care tasks

Young-Hyman, D., & Peyrot, M. (2012). *Psychosocial care for people with diabetes*. American Diabetes Association.

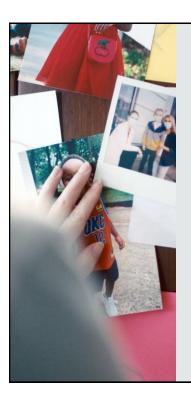
Treatments for Depression and Anxiety

Psychotropic medication


and/or

Evidence Based Psychotherapy

- Cognitive Behavior Therapy (CBT)
- Interpersonal Therapy (IPT)
- Acceptance and Commitment Therapy (ACT)



How to Discuss Referrals for Ancillary Services:

- Summarize any concerns mentioned during your visit.
- Collaborate & develop a plan.
 - Ask about what patient thinks might help.
 - Offer additional possibilities
 - Incorporate patient's ideas
- Assess barriers to potential plans/referrals, and strategies to overcome barriers.
- Develop a follow-up plan.

Contact Information

Mailing Address

1200 Children's Avenue
Oklahoma City, OK 73104

Email Address Kathryn-Jeter@ouhsc.edu

Phone Number (405) 271 4407

Diabetes Care Summit

Overview of Nonalcoholic Fatty Liver Disease (NAFLD) 09/10/2021

Sirish K. Palle, MD Assistant Professor Department of Pediatrics Oklahoma University Health Sciences Center

Case

- 19 year old female referred from primary care due to abnormal ALT
- She is asymptomatic and not entirely sure why she is in the liver clinic
- Past medical history significant for:
 Diabetes with a hemoglobin A1C of 7.2% and states she is diet controlled
 Obesity, BMI 31 kg/m2
- No Family history of Liver disease
- No alcohol consumption
- PE: significant for central adiposity, no stigmata of advanced liver disease or cirrhosis

Case

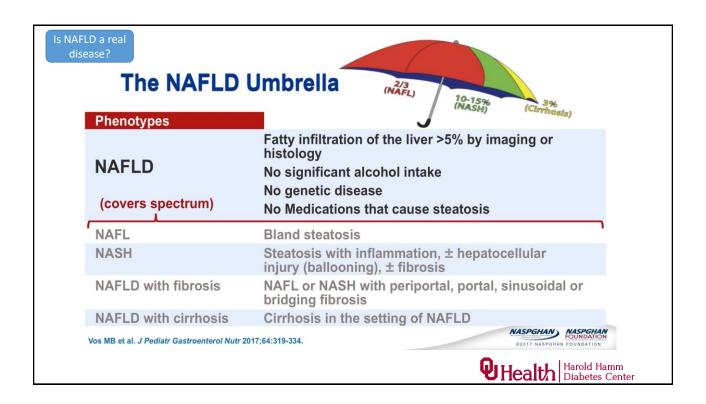
- Total Bilirubin 0.9
- Alanine aminotransferase(ALT): 90
- Aspartate aminotransferase (AST): 60
- Alkaline phosphatase: 100
- Viral Hepatitis serologies: Immune to hepatitis A and B, negative for hepatitis C
- Antinuclear antibody (ANA): 1:40
- Ferritin 300, percent saturation: 33%
- Ultrasound shows a liver with increased echogenicity

Differential Diagnosis

- Viral hepatitis excluded
- ANA positive with a low grade titer – could this be autoimmune hepatitis?
- Ferritin elevated, but normal % saturation- iron overload? Hereditary hemochromatosis?
- Evidence of fat on ultrasound in a non drinker with facets of the metabolic syndrome
- Low grade ANA titers are present in up to 33% of patients with NAFLD. Titers >1:320 are rare
- Mild increases in serum ferritin are not uncommon among patients with insulin resistance and do not reflect iron overload
- This is a good starting point for a clinical diagnosis of NAFLD

Vuppalanchi. Hepatol 2009

AASLD guidance – recent updates


- Stronger emphasis on assessment for metabolic risk factors in NAFL
- patients with NAFLD have increased morbidity and mortality
- Advanced liver fibrosis is associated with increasing number of metabolic comorbidities
- Early identification and treatment of individual components of the metabolic syndrome are critical in preventing both cardiovascular and liver-related mortality

Ando et al Jan 2021

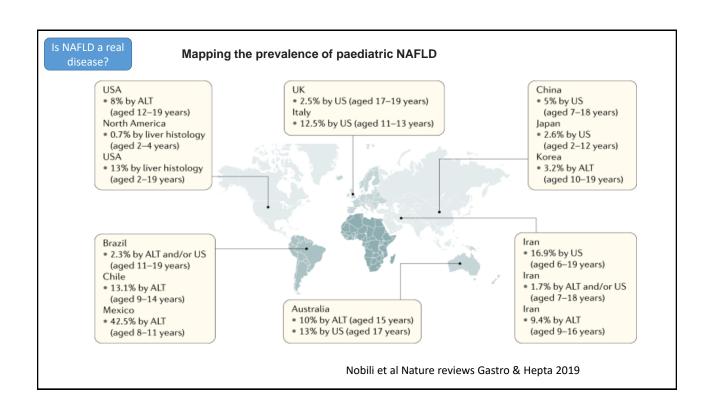
Abnormal Liver enzymes in a patient with diabetes

- Is Nonalcoholic Fatty Liver Disease (NAFLD) a real disease?
- Assessment of Disease severity
- Currently available interventions
- Future Interventions
- Management Algorithm

Secondary causes of hepatic steatosis

TABLE 1. Common Causes of Secondary HS

Macrovesicular steatosis


- Excessive alcohol consumption
- Hepatitis C (genotype 3)
- WD
- Lipodystrophy
- Starvation
- Parenteral nutrition
- Abetalipoproteinemia
- Medications (e.g., mipomersen, lomitapide, amiodarone, methotrexate, tamoxifen, corticosteroids)

Microvesicular steatosis

- Reye's syndrome
- Medications (valproate, antiretroviral medicines)
- Acute fatty liver of pregnancy
- HELLP syndrome
- Inborn errors of metabolism (e.g., lecithin-cholesterol acyltransferase deficiency, cholesterol ester storage disease, Wolman's disease)

Chalasani et al Hepatology 2018

NAFLD - Prevalence in Children

- NAFLD is the most common cause of pediatric liver disease
- There are very few studies describing the incidence of NAFLD in children
- Prevalence of NAFLD parallels obesity
- 2.7 fold increase 1980's to current era
- NAFLD prevalence depends on –population screened and screening method used (ALT, imaging, liver biopsy)
- 2-4 yrs 0.7%, 15-19 yrs 17.3%, obese children by ALT elevation- 29-38%
- Ethnicity

Hispanic 11-22 yrs – 4 fold increased risk

- Asian children 10.2%
- White children 8.6%
- Black children 1.5%

Welsh JA et al Pediatrics 2013 Schwimmer JB et al Pediatrics 2006 Louthan JPGN 2005 Patton JPGN 2006

Is NAFLD a real disease?

NAFI D-Prevalence in children

Prevalence in higher in certain population

- Overweight/Obese
- Males>Females
- Ethnicity: Hispanics>Asian>Caucasian>Black
- Prediabetes or type 2 diabetes
- Obstructive sleep apnea (OSA)
- Hypothalamic dysfunction/hypopituitarism

Nadeau KJ et al JOGN 2005 Sundara SS et al J Pediatrics 2014 Nobili V et al Am J Resp. Crit Med 2014

Is NAFLD a real disease? NAFLD incidence in adults

- Incidence of NAFLD from Asian countries
- -Based in ultrasound 19-30 per 1,000 years
- -Based on MRI and TE 13.5% (34 per 1,000 person-years)
- Incidence rates of NAFLD in Western countries
- -Study from England 29 per 100,000 person-years
- -Study from Israel 28 per 1,000 person-years
- Recent meta-analysis pooled regional incidence of NAFLD from Asia to be 52.34 per 1,000 person-years where as from the West ~28 per 1,000 person-years

Chalasani et al Hepatology 2018

Is NAFLD a real disease?

Is NAFID a real disease

· NAFLD is common

Prevalence depends on population studied and method used to make

diagnosis

1 in 3 American adults has simple steatosis Ultrasound data estimates prevalence ~50%

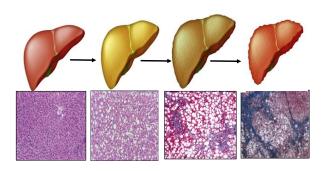
NHANES III estimate range from 8-24%

Prevalence in bariatric surgery patients may be as high as 90%, up to 55% may have NASH and 12% with bridging fibrosis

Global prevalence 24% (meta analysis)

 Incidence of new NAFLD rising in step with increasing rates of obesity, diabetes and physical inactivity

Williams, Gastro 2011 Clark et al AJG 2207 Younossi et al Hepatology 2016 www.cdc.gov



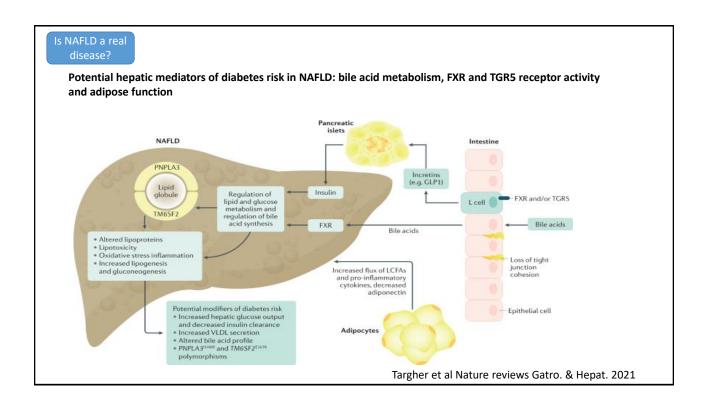
NAFLD is a progressive disease

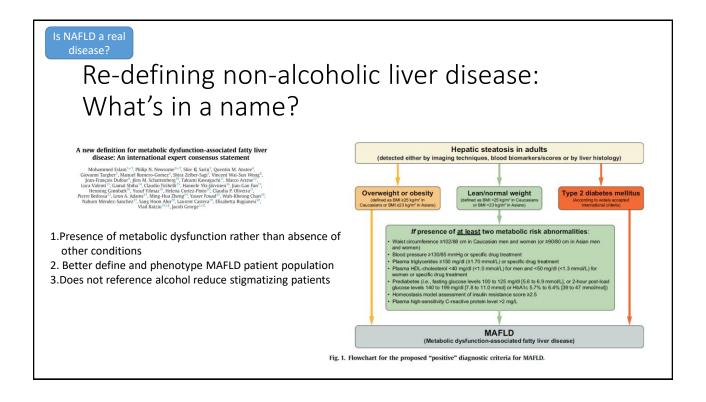
5-20%

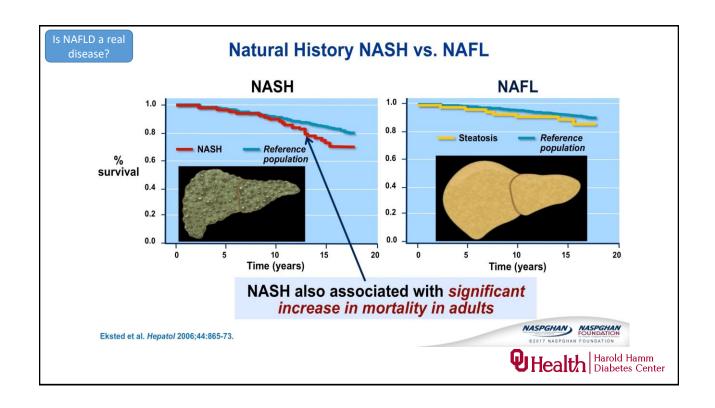
Who will progress?

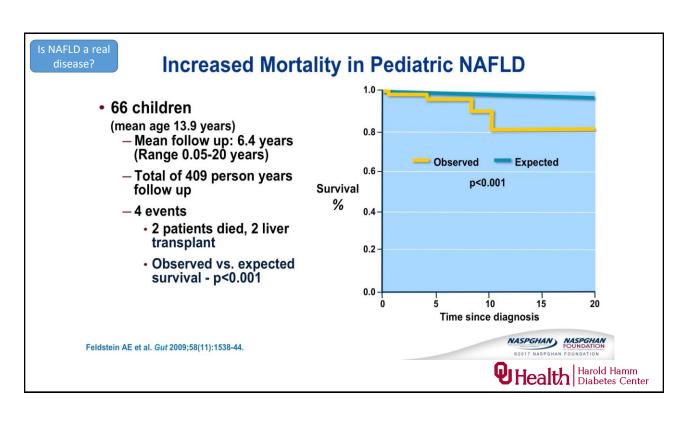
- Risk Factors
- -Central obesity
- -Hypertension
- -Dyslipidemia
- -Type 2 Diabetes
- -Metabolic syndrome
- -Advancing age
- -Polycystic ovary syndrome
- ALT is not a reliable indicator of disease severity

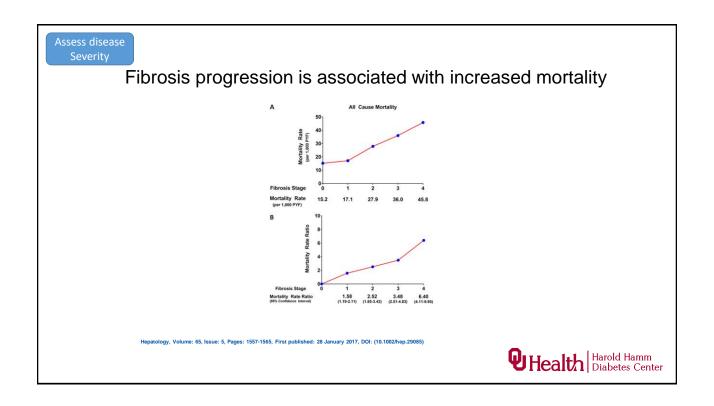
Is NAFLD a real disease?

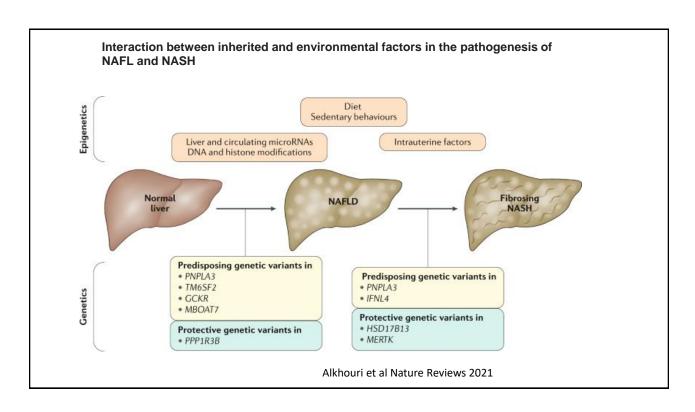

Insulin Resistance and Diabetes Mellitus

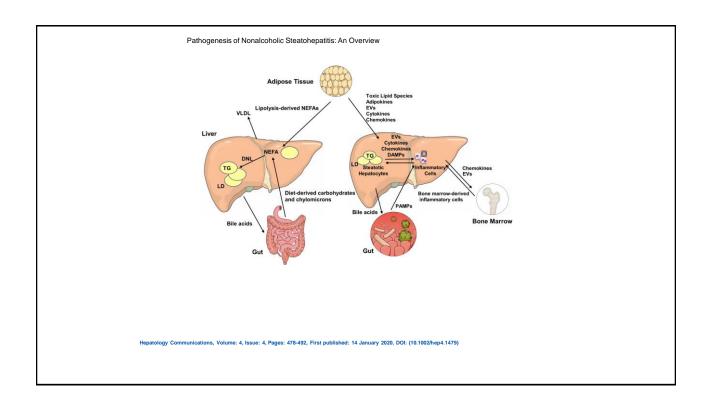

- Increased risk of NASH if NAFLD with:
 - Insulin resistance (OR: 1.8)
 - Diabetes mellitus (OR: 2.6)
- Correlation between hepatic fat and prevalence of insulin resistance
- Baseline fat content predicts long-term (~2y) insulin sensitivity

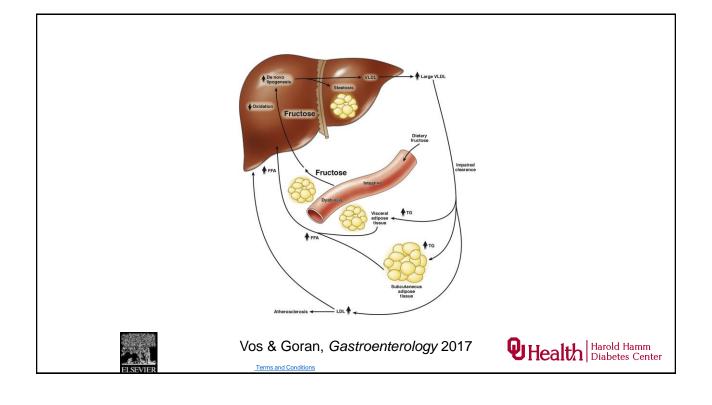

Newton KP et al. *JAMA Pediatr* 2016;170(10):e162199. Cali AMG et al. *Hepatol* 2009;49(6):1896–1903. Kim JY et al. *Diab Care* 2013;36:1547–1553.











NAFLD pathogenesis

- Adipose tissue inflammation
- De novo Lipogenesis (DNL)
- Insulin resistance
- Lipotoxicity
- Mitochondrial Dysfunction
- Oxidative stress
- Endoplasmic Stress

Assess disease Severity

NAFLD Screening

Upper Limit for ALT?

- · Regional laboratories use local population for norms
 - Do not exclude overweight/obese or other causes of liver disease
 - Median ULN at children's hospitals 53 U/L (range 30-90)
- 95 percentile for ALT in healthy weight, metabolically normal, liver disease free, NHANES adolescent group (12-17 yrs)

ALT 25.8 U/L for BOYS ALT 22.1 U/L for GIRLS

Schwimmer JB et al. Gastroenterology 2010;138:1357-64. Colantonio DA et al. Clin Chem 2012;58:854-68.

Assess disease Severity

Limitations of ALT

- Poor correlation with histology
 - Some studies suggest AST, GGT better correlated with fibrosis
 - ALT changes even with placebo!
- Fluctuations over time
- Cannot always differentiate between

NASH

NAFL

Loomba R et al. Clin Gastro Hepatol 2008;6(11):1243-8.

Assess disease Severity

Non-Invasive assessment of disease

- Several clinical prediction scores for assessing severity of disease
- NFS

 $1.675+0.037\times$ age (years) + $0.094\times$ BMI (kg/m²) + $1.13\times$ IFG/diabetes (yes = 1, no = 0) + $0.99\times$ AST/ALT ratio – $0.013\times$ platelet (×109/I) – $0.66\times$ albumin (g/dl)

• FIB-4

FIB-4 = Age (years) × AST (U/L)
Platelet Count (10°/L) × √ALT (U/L)

- Both are reasonable to use
- Comparable to AUROC scores
- NFS 0.81, FIB-4 0.82
- Inexpensive
- On hand held devices
- Many others with similar accuracy

Assess disease Severity

Ultrasound

- Pros:
 - Non-invasive
- Cons
 - Low sensitivity/specificity particularly lower degrees of steatosis

(not recommended for screening in NASPGHAN Guidelines)

Cannot differentiate between

NASH

NAFL

Awai HI et al. Clin Gastroenterol Hepatol 2014;12:765-73.

Assess disease Severity

Non-Invasive assessment of disease

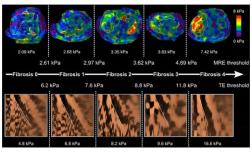
Vibration Controlled Transient Electrography (Firboscan)

- Liver stiffness measured in kilopascals and correlated with fibrosis stage, F0-F4
- AUROC for F3 or higher disease 0.93 in NAFLD

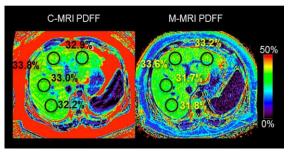
Controlled Attenuation Parameter (CAP)

- Steatosis measured in dB/m and correlated with steatosis grade, S0-S3
- AUROC score for S1 and greater 0.86

Wong. Hepatol 2010 Karlas, J Hepatol 2017


Assess disease Severity

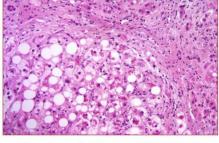
Magnetic Resonance Imaging Technology


MR-Elastography (MRE) for Fibrosis

MR-Proton density fat fraction for steatosis (MR-PDFF)

2D and 3D MRE have AUROC > 0.92 Multiple single center trials show MRE > VCTE

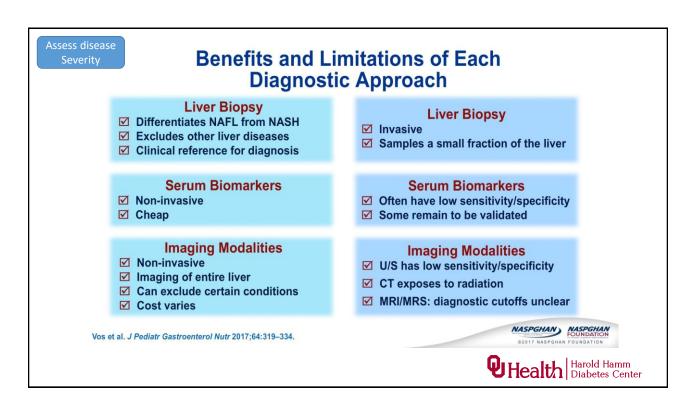
Kim, Radiology 2013 Caussy, Hepatology 2018 Hsu, Clin Gastroenterol Hepatol 2018



Assess disease Severity

Assessment of Steatosis


- Liver biopsy
 - Traditionally used to quantify steatosis
 - Steatosis in >5% of hepatocytes is abnormal
 - NAFLD Activity Score (NAS)
 - · Research: steatosis grading 0-3
- Imaging
 - Investigative ultrasonography
 - MR-based technologies


Brunt EM et al. *Hum Pathol* 2004;35:1070-1082. Kleiner DE et al. *Hepatol* 2005;41(6):1313-21. Mencin AA et al. *Nat Rev Gastroenterol Hepatol* 2015;12:617-628.

Cost and availability limit their use

Screening

- Screening should be considered between 9 and 11 years for
- Children (BMI ≥ 95TH percentile)
- Children (BMI ≥ 85th and 94th percentile) with additional risk factors like central obesity, insulin resistance, prediabetes or diabetes, dyslipidemia, hypopituitarism, sleep apnea or family history of NAFLD/NASH
- Best test currently is ALT
- Sex specific upper limits of normal in children (22 U/L for girls and 26 U/L for boys)
- Persistently (>3 months) elevated ALT more than twice the upper limit of normal should be evaluated for NAFLD
- ALT of >80 U/L warrants increased clinical concern and timely evaluation

Assess disease Severity

Problem: NAFLD is difficult to confirm

- Confirmation is invasive (biopsy).
- Serum tests (ALT, AST) are not reliable predictors of steatosis/fibrosis.
- Imaging tools have limitations (MRI, ultrasound) or may not be widely available (MRS, Fibroscan).
- Biomarkers for NAFLD in adults may not perform as well in children.
- Biomarkers tested in children often lack biopsy confirmation, appropriate control groups, or longitudinal assessments.

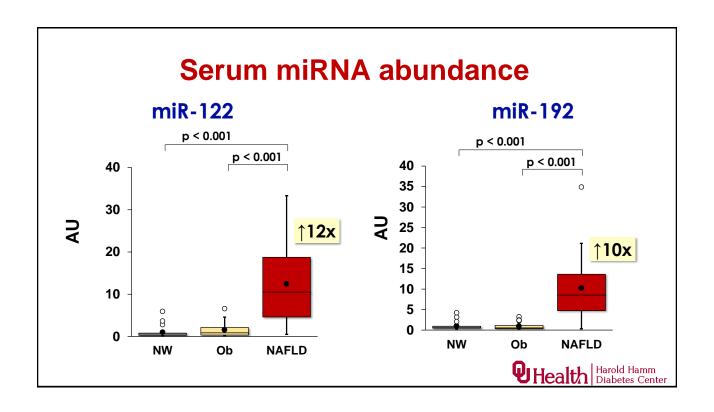
Purpose

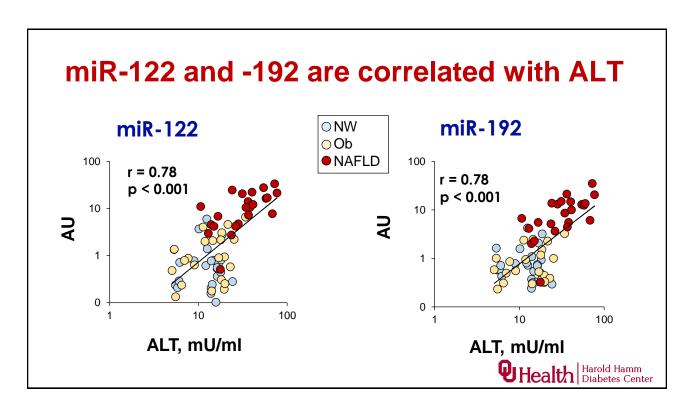
To determine if:

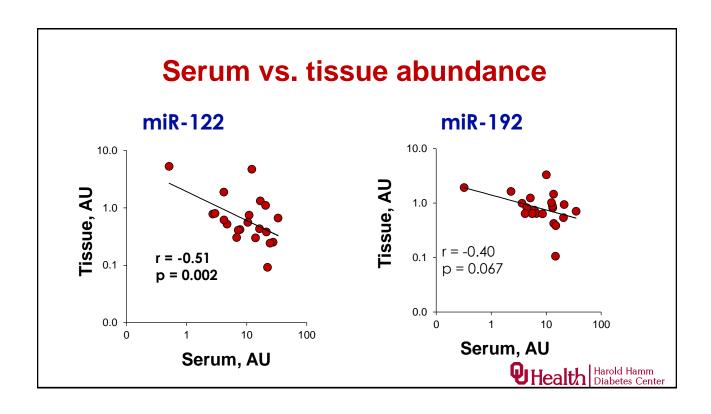
Serum miR-122 and/or -192 are increased in pediatric NAFLD patients compared to normal weight and obese peers.

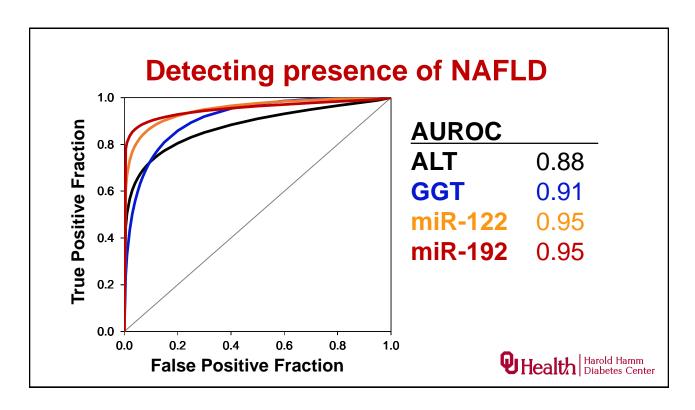
Abundance of miR-122 and/or -192 in serum are inversely correlated with their content in liver in pediatric NAFLD patients.

Serum miR-122 and/or -192 are better biomarkers of pediatric NAFLD than the current standard biomarker, ALT.




Participant characteristics


mean ± SD


	Norm Weight	Obese	NAFLD
Girls/Boys	9 F / 16 M	13 F / 11 M	10 F / 15 M
Age (years)	15.7 ± 2.3	16.5 ± 2.6	16.0 ± 2.2
Weight (kg)	55.6 ± 12.1	92.7 ± 24.5	94.6 ± 22.6
BMI (%)	55 ± 25	98 ± 2	98 ± 2

Consider the entire patient

- All cause mortality in the general population
- CVD
- Cancer
- ~12.Liver Disease
- All cause mortality in the patient with NASH
- CVD
- Cancer
- Liver Disease

- We can address these risks in a complimentary manner with currently available medications
- Cardiovascular risks-Statins
- Cancer risk- Statins, metformin, weight loss
- Metabolic syndrome- HTN, dyslipidemia, diabetes
- Obesity
- NASH specific

NAFLD and CVD risk

Cardiovascular disease is the leading cause of death in adults with NAFLD.

Fatty liver exacerbates dyslipidemia, thrombosis, systemic inflammation, oxidative stress, neuroendocrine system, vascular tone.

NAFLD and CVD risk

EASL and AASLD recommend screening and treatment of CVD risks

Most work has been performed in adults:

Are increased CVD risks evident in pediatric NAFLD?

Summary of CVD risk factors

	NAFLD versus control
HDL-C	•
Triglycerides	
Fatty acids	T
Aerobic fitness	A
Blood pressure	•
Pulsewave velocity	•
Heart rate variability	• • • • • • • • • • • • • • • • • • •
	Опе ани

Impact of Treatment

- Treating dyslipidemia in the context of NAFLD:
 - No data on hepatic impact of dyslipidemia treatment
- Treating NAFLD impact on dyslipidemia:
 - TONIC: NASH resolution associated with improvement in cholesterol, not TG
 - DHA superior to placebo for TG improvement
 - Low fructose diet improved oxidized LDL

Lavine JE et al. *JAMA* 2011;305(16):1659-68. Nobili V et al. *Nutr Metab Cardiovasc Dis* 2013;23:1066–1070. Vos MB et al. *Arch Pediatr Adolesc Med* 2009;163(7):666-666.

Current Interventions

Potential Treatment Options

- Lifestyle
- Dietary supplements
- Medications
- Surgery

Vos MB et al. J Pediatr Gastroenterol Nutr 2017; 64(2):319-334.

Current Interventions

Lifestyle Interventions

Review

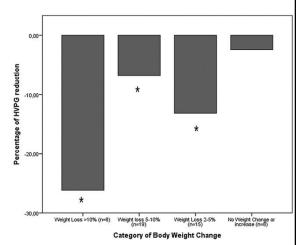
Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: A systematic review

Christian Thoma^{1,2,3}, Christopher P. Day^{1,2}, Michael I. Trenell^{1,2,3,*}

- 11 diet studies, 2 exercise only studies, 7 combo studies
- In general interventions were brief (1-6 months)
- Many lacked control group, only a few used histology
- Magnitude of body weight change reflected in change in liver fat
- Exercise only interventions may change liver fat while body weight is neutral

- Need significant and sustained weight loss to have an impact
- ≥5% weight loss reverses NASH
- ≥10% weight loss reverses fibrosis

Thoma et al Hpatol 2012 Villar-Gomez, Gastro 2015



Current Interventions

Life style modification: It's never too late

Effect of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study

- Weight loss might safely reduce portal pressure in obese cirrhotic patients with portal hyprtension
- Spanish multicenter study of 60 obese patients with cirrhosis sand HVPG>6mmHg who underwent a 16 week lifestyle intervention aimed at reducing body weight
- Lifestyle intervention decreased body weight by -5.0±4.0 kg; (p<0.0001 vs. baseline)
- Associated with a significant decrease in waist circumference and percentage of body fat

Health Harold Hamm Diabetes Center

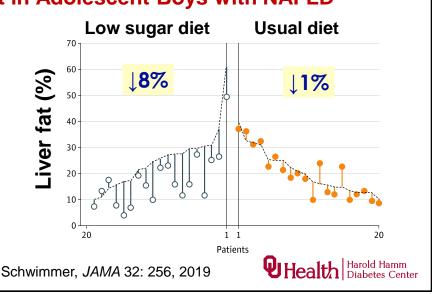
Berzigotti et al Hepatology 2017

Current Interventions

Lifestyle Targets

- Avoid sugar-sweetened beverages
- Healthy, well-balanced diet
- Moderate to vigorous exercise
- Limit screen time to < 2 hours per day

Vos MB et al. J Pediatr Gastroenterol Nutr 2017; 64(2):319-334.



Effect of a Low Sugar Diet vs Usual Diet on Liver Fat in Adolescent Boys with NAFLD

8-week intervention:

Usual diet vs. Sugar < 3% energy intake

N = 20 boys/group Age ~13y 95% Hispanic

Components of a lifestyle approach to NAFLD

Energy restriction

- Calorie restriction (500-1,000/day)
- 7–10% weight loss target
- · Long-term maintenance approach

Fructose intake

 Avoid fructose-containing food and drink

Coffee consumption

· No liver-related limitations

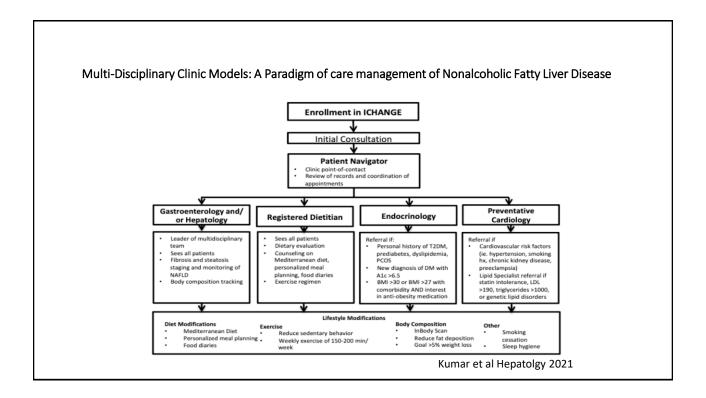
Comprehensive lifestyle approach

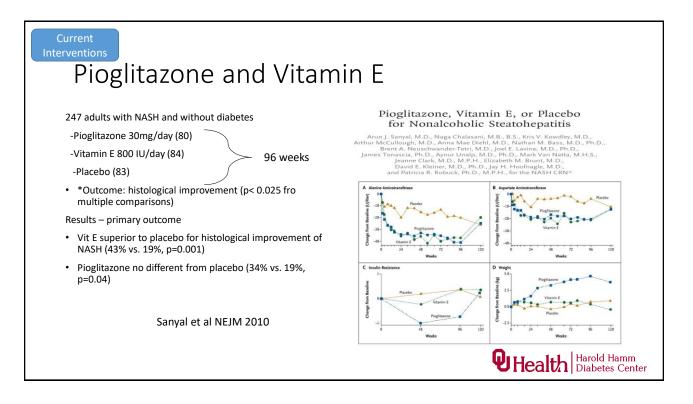
Daily alcohol intake

 Strictly below 30 g men and 20 g women

Macronutrient composition

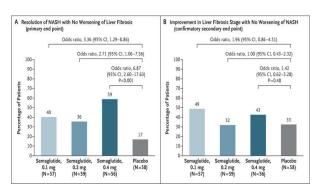
- Low-to-moderate fat
- · Moderate-to-high carbohydrate
- Low-carbohydrate ketogenic diets or high protein


Physical activity


- 150–200 min/week moderate intensity in 3–5 sessions
- Resistance training to promote musculoskeletal fitness and improve metabolic factors

EASL-EASD-EASO CPG NAFLD. J Hepatol 2016;64:1388-402

Multi-Disciplinary Clinic Models: A Paradigm of care management of Nonalcoholic Fatty Liver Disease NAFLD diagnosis and potential referral to ICHANGE Patient navigator review of records Referral labs required: CBC, CMP LOW Risk FIB4 <1.30 No clinical/radiologic high risk features No high risk metabolic INTERMEDIATE OR HIGH Risk FIB4 > 1.30 Diabetes (even with low FIB4) Clinical/radiologic evidence of fibrosis comorbidities ONLY visit ENROLLMENT INTO ICHANGE Score <6.0kPa Score >6.0kPa Refer back to Primary Care for lifestyle modifications and recommendation for annual liver fibrosis reassessment Kumar et al Hepatolgy 2021

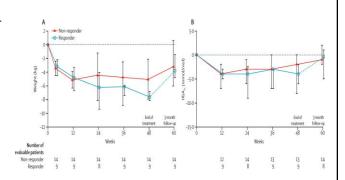

Current Interventions

Glucagon-like peptide (GLP)analogue

- 320 adults
- 230 (F2/F3 fibrosis)
- Semaglutide
- -0.1mg (80 pts)
- -0.2 mg (78 pts)
- -0.4 mg (82 patients)
- NASH resolution (40 % vs 36% vs 59% vs 17%)
- Improvement in fibrosis NS

A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis

P.N. Newsome, K. Buchholtz, K. Cusi, M. Linder, T. Okanoue, V. Ratziu, A.J. Sanyal, A.-S. Sejling, and S.A. Harrison, for the NN9931-4296 Investigators

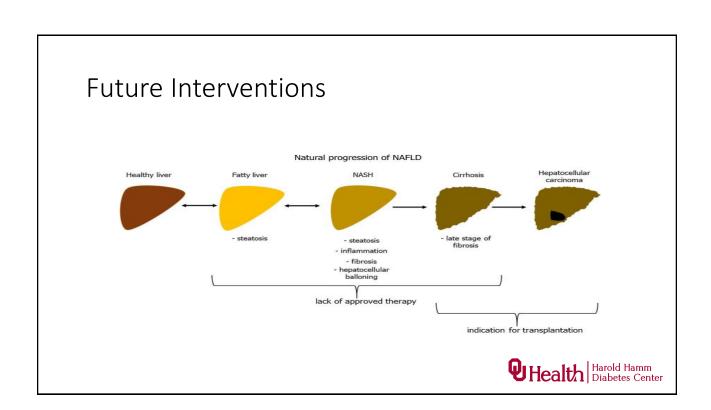

Newsome et al NEJM 2021

Current Interventions

Liraglutide/LEAN trial

- Glucagon-like peptide 1 reduces liver fat, ALT and insulin resistance in mice models
- Phase 2b DBRCT liraglutide vs placebo x 48 weeks
- Resolution of NASH in 9/23 (39%) vs. 2/22 (9%) placebo p=0.019
- Secondary outcomes showed improvements in weight and ALT
- · Liraglutide well tolerated

Armstrong et al LANCET 2016



Current Interventions

AASLD NAFLD guidance

- Piaglitazone only for patients with biopsy proven NASH
- · Discuss risks and benefits
- Not recommended for patients without biopsy proven disease
- It is premature to consider GLP-1 agonists to specifically treat liver disease in patients with NASH
- Vitamin E may be considered for non diabetic adults with biopsy proven NASH
- · Discuss risks and benefits
- Not recommended for diabetic NAFLD without biopsy or cirrhosis
- Other medications like UDCA and omega 3 fatty acids should not be used as specific treatment for NAFLD

Future Interventions

Elafibranor

- Peroxisome proliferator activated (PPAR) α/δ agonist improves multiple factes of the metabolic syndrome
- Anti-inflammatory
- Lacks PPAR Y associated with weight gain and edema

PPAR δ

Lipoprotein metabolism
Glucose homeostasis
Energy metabolism
Inflammation

Gastroenterology 2016:150:1147-1159

Future Interventions

Elafibranor

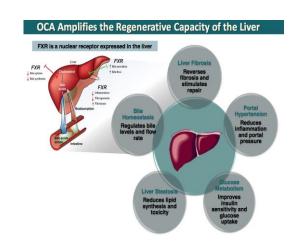
CLINICAL—LIVER

Elafibranor, an Agonist of the Peroxisome Proliferator — Activated Receptor — α and — δ , Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening

Vlad Ratziu, ^{1,2} Stephen A. Harrison, ³ Sven Francque, ⁴ Pierre Bedossa, ⁵ Philippe Lehert, ^{6,7} Lawrence Serfaty, ⁶ Manuel Romero-Gomez, ⁹ Jérôme Boursier, ¹⁰ Manal Abdelmalek, ¹¹ Steve Caldwell, ¹² Joost Drenth, ¹³ Quentin M. Anstee, ¹⁴ Dean Hum, ¹⁵ Remy Hanf, ¹⁵ Alice Roudot, ¹⁵ Sophie Megnien, ¹⁵ Bart Staels, ¹⁶ and Arun Sanyal, ¹⁷ on behalf of the GOLDEN-505 Investigator Study Group

- Elafibranor is a PPAR agonist which improves insulin sensitivity, glucose homeostasis, lipis metabolism and reduces inflammation
- Phase ii clinical trial off patients with NASH
- Elafibranor 80mg n=93
- Elafibranor 120 mg n=91
- Placebo n=90
- Study x 52 weeks, primary outcomes of resolution of NASH without fibrosis worsening

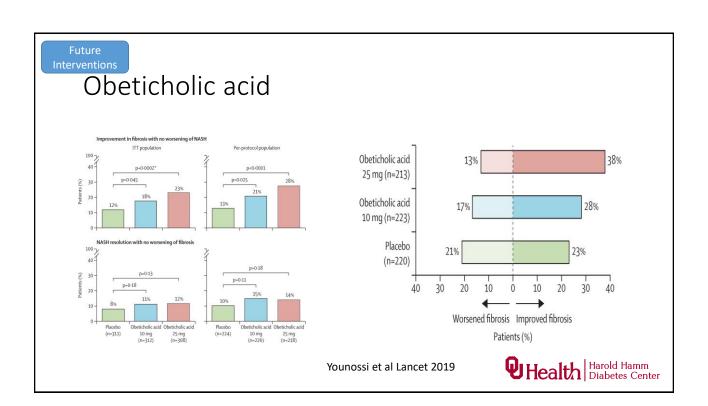
Elafibranor


- ITT: no difference between drug and placebo
- In post-hoc analyses of patients with NAFLD activity score 4, elafibranor 120mg resolved NASH in larger proportions of patients than placebo based on the protocol definition (20% vs 11%)
- Patients with NASH resolution after receiving elafibranor 120 mg had reduced liver fibrosis stages compared with those without NASH resolution
- Drug well tolerated
- Secondary end points all showed improvement in elements of the metabolic syndrome
- Modified end points were sufficient to justify phase III trial

Future Interventions

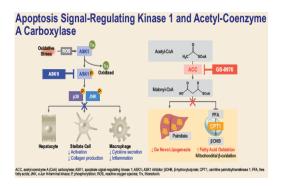
Obeticholic acid

- FXR agonist will decrease hepatic fat and may improve insulin resistance as well as other facets of the metabolic syndrome
- Significance of LDL unknown



Obeticholic acid

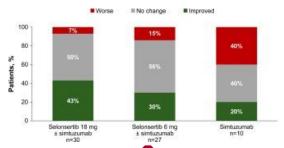
- 141:142 obiticholic acid vs. placebo
- 45% improved liver histology compared with 21% in the placebo group (RR 1.9, 95% Cl 1.3 to 2.8; p=0.0002)
- 23% of 141 patients in the obeticholic acid developed pruritus compared with 6% of 142 in the placebo group
- OCA patients had increasing TC and LDL with decreasing HDL
- Trial stopped early by DSMB due to clear effect


Neuschwander-Tetri et al, Lancet 2015

Selonsertib

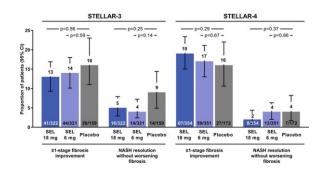
- ASK1 inhibitor (apoptosis inhibitor)
- Activated in NASH and correlated with fibrosis stage
- Inhibition improves steatosis,
 Inflammation and fibrosis in mice

Bates AASLD 2017


Future Interventions

Selonsertib

- Phase 2 RCT
- Selonsertib +/- simtuzumab for 24 weeks
- · No placebo arm
- Primary end point was improved fibrosis
- 43% on SEL 18 mg had improved histology


The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial

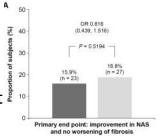
Rohit Loomba ³, Eric Lawitz ², Parvez S Mantry ³, Saumya Jayakumar ⁴, Stephen H Caldwell ⁵, Hays Arnold ⁶, Anna Mae Diehl ⁷, C Stephen Djedjos ⁸, Ling Han ⁸, Robert P Myers ⁸, G Mani Subramanian ⁸, John G McHutchison ⁸, Zachary D Goodman ⁹, Nezam H Afdhal ³⁰, Michael R Charlton ³³, GS-US-384-1497 Investigators

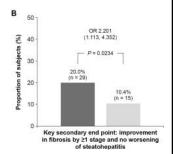
Selonsertib

- PHASE III STELLAR trials
- Forty-eight weeks of selonsertib monotherapy had no antifibrotic effect in patients with bridging fibrosis or compensated cirrhosis due to NASH.

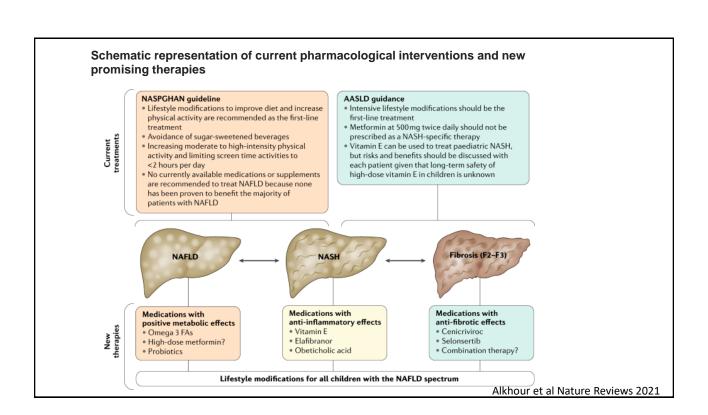
Future Interventions

Cenicriviroc

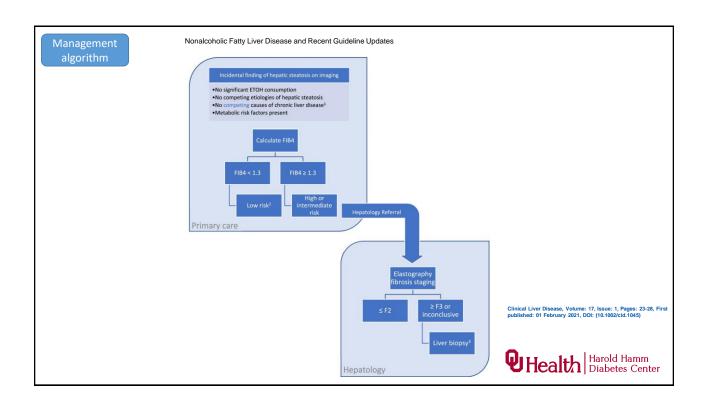

- Dual antagonist of C-C chemokine receptor types 2 and 5 (CCR2/CCR5)
- Antifibrotic effect (blockade of CCR2/5 inhibits stellate cell activation)
- Anti-inflammatory effect (Inhibits Kupffer cells and monocyte/macrophage recruitment)


Friedman et al Hepatology 2018

Cenicriviroc


- Phase 2 RCT
- 289 NASH patients with and without Diabetes
- Preliminary endpoint of improved histology not met, but appears to have antifirbotic effect
- Antifibrotic effect justified phase 3 clinical trials

Friedman et al Hepatology 2018



Challenges of treating NASH will continue

- If/when there are successful FDA approved interventions for NASH, questions and challenges will remain
- Are these lifetime drugs?
- Interventions to pause disease while patients fix lifestyle probems
- Cardiovascular risk
- Cancer isk
- Trial efficacy vs. real world effectiveness

Case Epilogue

- NAFLD fibrosis score=1.977 presence of significant fibrosis
- Transient elastography 7.5 kPa, interpreted as F2-3 disease
- Liver biopsy shows stage 2 fibrosis, NASH activity score 5
- Minimal success with lifestyle intervention and risk factor control
- Enrolls in a clinical trial

Key Take-Away Slide

- Know your local lab and what they report as "normal"
- Some labs may not be flagged as "abnormal", but still may be clinically elevated
- NAFLD is a common progressive disease where disease progression is associated with liver related and all cause mortality
- Address the whole patient by considering cardiovascular, cancer, and liver-specific health risks
- New medications are on the horizon, but duration and timing of use is still unknown

Unanswered questions and research priorities

- Natural history of NAFLD starting in childhood
- Risk factors in pediatric NAFLD that predict progression to cirrhosis and HCC
- Noninvasive diagnostics
- Longitudinal studies of biomarkers and imaging
- Treatment questions: role of dietary interventions, type and duration of exercise, validation of promising therapeutics and role of weight loss surgeries
- Cost effectiveness and public health questions: Effective prevention strategies, cost effectiveness of screening, diagnosis and follow up

Future directions

- Improvement in understanding of the disease will lead to improved outcomes
- · As pediatricians, prevention is a priority but not yet focus for funding
- Collaborative efforts exist nationally and internationally
 - -NASPGHAN NAFLD scientific advisory board
 - The Liver Forum
 - NIH sponsored NASH Clinical Research Network
 - Industry supported natural history studies

 	·	
